scispace - formally typeset
Search or ask a question
Author

Marc A. Meyers

Bio: Marc A. Meyers is an academic researcher from University of California, San Diego. The author has contributed to research in topics: Deformation (engineering) & Dislocation. The author has an hindex of 85, co-authored 487 publications receiving 36646 citations. Previous affiliations of Marc A. Meyers include University of California & Instituto Militar de Engenharia.


Papers
More filters
Proceedings ArticleDOI
TL;DR: In this article, an expression for the energy requirement to shock consolidate a powder as a function of strength, size, porosity, and temperature based on a prescribed interparticle melting layer was developed.
Abstract: The energy dissipated by a shock wave as it traverses a powder is assessed. The various energy dissipation processes are analyzed: plastic deformation, interparticle friction, microkinetic energy, defect generation. An expression is developed for the energy requirement to shock consolidate a powder as a function of strength, size, porosity, and temperature, based on a prescribed interparticle melting layer. The corresponding pressures are calculated and it is shown that the activation of flaws occurs at tensile reflected pulses that are a decreasing fraction of the compressive pulse as the powder strength increases. These analytical results are compared to numerical solutions obtained by modeling the compaction of a discrete set of particles with an Eulerian finite element program.

3 citations

Journal Article
TL;DR: In this article, the effect of He concentration and morphology on ejecta production via molecular dynamics simulations was investigated by inserting identical He concentrations into Cu single crystals as interstitial atoms or bubbles near a flat free surface.
Abstract: Abstract The effect of He concentration and morphology on ejecta production is investigated via molecular dynamics simulations. Identical He concentrations are inserted into Cu single crystals as interstitial atoms or bubbles near a flat free surface. The resulting ejecta is quantified through total mass, cluster size, and velocity of ejected particles. The presence of He increases total ejected mass as compared to pure Cu; He bubbles produce 56% more mass than atomic He. This increase is attributed to non-planarities in the shock front and reflected pulse due to He bubbles, akin to ejecta resulting from traditional Richtmeyer–Meshkov instabilities.

3 citations

Journal ArticleDOI
TL;DR: In this paper, the processus microstructuraux les plus importants dans la consolidation par ondes de choc sont identified and illustres for un alliage a base de nickel and une ceramique (SiC), and les phenomenes suivants ont etes observes: vorticite, fusion des regions entre les poudres, and formation de vides.
Abstract: Les processus microstructuraux les plus importants dans la consolidation par ondes de choc sont identifies et illustres pour un alliage a base de nickel et une ceramique (SiC). Les phenomenes suivants ont etes observes: vorticite, fusion des regions entre les poudres, et formation de vides. Plusieurs mecanismes de dissipation sont analyses: deformation plastique, frottement interparticulaire, energie microcinetique, et creation de defauts (dislocations et lacunes). Une equation analytique est developee pour l'energie necessaire pour consolider une poudre en fonction de la contrainte d'ecoulement, taille de poudre, porosite, et temperature, pour une epaisseur donnee de la region de fusion sur la surface des poudres

3 citations

Journal ArticleDOI
TL;DR: Meyers et al. as mentioned in this paper proposed a method to solve the problem of high computational complexity in the context of Biomaterialia by using a finite state machine (FSM) model.

2 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

01 Jan 2016
TL;DR: The using multivariate statistics is universally compatible with any devices to read, allowing you to get the most less latency time to download any of the authors' books like this one.
Abstract: Thank you for downloading using multivariate statistics. As you may know, people have look hundreds times for their favorite novels like this using multivariate statistics, but end up in infectious downloads. Rather than reading a good book with a cup of tea in the afternoon, instead they juggled with some harmful bugs inside their laptop. using multivariate statistics is available in our digital library an online access to it is set as public so you can download it instantly. Our books collection saves in multiple locations, allowing you to get the most less latency time to download any of our books like this one. Merely said, the using multivariate statistics is universally compatible with any devices to read.

14,604 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
28 Jan 2000-Science
TL;DR: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a "nanostressing stage" located within a scanning electron microscope and a variety of structures were revealed, such as a nanotube ribbon, a wave pattern, and partial radial collapse.
Abstract: The tensile strengths of individual multiwalled carbon nanotubes (MWCNTs) were measured with a “nanostressing stage” located within a scanning electron microscope. The tensile-loading experiment was prepared and observed entirely within the microscope and was recorded on video. The MWCNTs broke in the outermost layer (“sword-in-sheath” failure), and the tensile strength of this layer ranged from 11 to 63 gigapascals for the set of 19 MWCNTs that were loaded. Analysis of the stress-strain curves for individual MWCNTs indicated that the Young's modulus E of the outermost layer varied from 270 to 950 gigapascals. Transmission electron microscopic examination of the broken nanotube fragments revealed a variety of structures, such as a nanotube ribbon, a wave pattern, and partial radial collapse.

5,011 citations