Author
Marc Acheroy
Bio: Marc Acheroy is an academic researcher from Royal Military Academy. The author has contributed to research in topics: Synthetic aperture radar & Radar. The author has an hindex of 20, co-authored 108 publications receiving 2419 citations.
Papers published on a yearly basis
Papers
More filters
TL;DR: A robust wavelet domain method for noise filtering in medical images that adapts itself to various types of image noise as well as to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction.
Abstract: We propose a robust wavelet domain method for noise filtering in medical images. The proposed method adapts itself to various types of image noise as well as to the preference of the medical expert; a single parameter can be used to balance the preservation of (expert-dependent) relevant details against the degree of noise reduction. The algorithm exploits generally valid knowledge about the correlation of significant image features across the resolution scales to perform a preliminary coefficient classification. This preliminary coefficient classification is used to empirically estimate the statistical distributions of the coefficients that represent useful image features on the one hand and mainly noise on the other. The adaptation to the spatial context in the image is achieved by using a wavelet domain indicator of the local spatial activity. The proposed method is of low complexity, both in its implementation and execution time. The results demonstrate its usefulness for noise suppression in medical ultrasound and magnetic resonance imaging. In these applications, the proposed method clearly outperforms single-resolution spatially adaptive algorithms, in terms of quantitative performance measures as well as in terms of visual quality of the images.
540 citations
TL;DR: This paper presents a new wavelet-based image denoising method, which extends a "geometrical" Bayesian framework and combines three criteria for distinguishing supposedly useful coefficients from noise: coefficient magnitudes, their evolution across scales and spatial clustering of large coefficients near image edges.
Abstract: This paper presents a new wavelet-based image denoising method, which extends a "geometrical" Bayesian framework. The new method combines three criteria for distinguishing supposedly useful coefficients from noise: coefficient magnitudes, their evolution across scales and spatial clustering of large coefficients near image edges. These three criteria are combined in a Bayesian framework. The spatial clustering properties are expressed in a prior model. The statistical properties concerning coefficient magnitudes and their evolution across scales are expressed in a joint conditional model. The three main novelties with respect to related approaches are (1) the interscale-ratios of wavelet coefficients are statistically characterized and different local criteria for distinguishing useful coefficients from noise are evaluated, (2) a joint conditional model is introduced, and (3) a novel anisotropic Markov random field prior model is proposed. The results demonstrate an improved denoising performance over related earlier techniques.
308 citations
TL;DR: The method exploits information which is complementary to gray level based approaches, enabling the fusion with those techniques, and is cheap and fast while offering a sufficient resolution for face recognition purposes.
Abstract: This paper presents automatic face authentication from facial surface analysis. This geometrical approach was motivated by difficulties encountered when considering frontal face recognition. Apart from being less sensitive to viewpoint and lighting conditions, the method exploits information which is complementary to gray level based approaches, enabling the fusion with those techniques. A 3D acquisition system based on structured light and adapted to facial surface capture is presented. It is cheap and fast while offering a sufficient resolution for face recognition purposes. The acquisition system and the 3D face comparison algorithm were designed to be integrated in security applications with cooperative scenario.
179 citations
TL;DR: An unsupervised texture classification scheme is proposed based on the image local spectrum which is obtained by a bank of Gabor filters and a method for choosing the optimal number of clusters is proposed.
Abstract: An unsupervised texture classification scheme is proposed in this paper. The texture features are based on the image local spectrum which is obtained by a bank of Gabor filters. The fuzzy clustering algorithm is used for unsupervised classification. In many applications, this algorithm depends on assumptions made about the number of subgroups present in the data. Therefore we discuss ideas behind cluster validity measures and propose a method for choosing the optimal number of clusters.
170 citations
TL;DR: In this article, the 3D and grey level comparison algorithms were designed to be integrated in security applications in which individuals cooperate, and the residual error after 3D matching was used as a first similarity measure.
Abstract: We address in this paper automatic face verification from 3D facial surface and grey level analysis. 3D acquisition is performed by a structured light system, adapted to face capture and allowing grey level acquisition in alignment. The 3D facial shapes are compared and the residual error after 3D matching is used as a first similarity measure. A second similarity measure is derived from grey level comparison. As expected, fusing 3D and intensity information increases verification performances. The acquisition system, the 3D and grey level comparison algorithms were designed to be integrated in security applications in which individuals cooperate.
170 citations
Cited by
More filters
Journal Article•
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON
13,333 citations
[...]
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).
13,246 citations
TL;DR: An algorithm based on an enhanced sparse representation in transform domain based on a specially developed collaborative Wiener filtering achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
Abstract: We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2D image fragments (e.g., blocks) into 3D data arrays which we call "groups." Collaborative Altering is a special procedure developed to deal with these 3D groups. We realize it using the three successive steps: 3D transformation of a group, shrinkage of the transform spectrum, and inverse 3D transformation. The result is a 3D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.
7,912 citations
Book•
10 Mar 2005TL;DR: This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators.
Abstract: A major new professional reference work on fingerprint security systems and technology from leading international researchers in the field Handbook provides authoritative and comprehensive coverage of all major topics, concepts, and methods for fingerprint security systems This unique reference work is an absolutely essential resource for all biometric security professionals, researchers, and systems administrators
3,821 citations
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher:
The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.
3,627 citations