scispace - formally typeset
Search or ask a question
Author

Marc-André Weber

Bio: Marc-André Weber is an academic researcher from University of Rostock. The author has contributed to research in topics: Magnetic resonance imaging & Contrast-enhanced ultrasound. The author has an hindex of 11, co-authored 85 publications receiving 3174 citations. Previous affiliations of Marc-André Weber include Heidelberg University & University Hospital Heidelberg.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: The Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) as mentioned in this paper was organized in conjunction with the MICCAI 2012 and 2013 conferences, and twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low and high grade glioma patients.
Abstract: In this paper we report the set-up and results of the Multimodal Brain Tumor Image Segmentation Benchmark (BRATS) organized in conjunction with the MICCAI 2012 and 2013 conferences Twenty state-of-the-art tumor segmentation algorithms were applied to a set of 65 multi-contrast MR scans of low- and high-grade glioma patients—manually annotated by up to four raters—and to 65 comparable scans generated using tumor image simulation software Quantitative evaluations revealed considerable disagreement between the human raters in segmenting various tumor sub-regions (Dice scores in the range 74%–85%), illustrating the difficulty of this task We found that different algorithms worked best for different sub-regions (reaching performance comparable to human inter-rater variability), but that no single algorithm ranked in the top for all sub-regions simultaneously Fusing several good algorithms using a hierarchical majority vote yielded segmentations that consistently ranked above all individual algorithms, indicating remaining opportunities for further methodological improvements The BRATS image data and manual annotations continue to be publicly available through an online evaluation system as an ongoing benchmarking resource

3,699 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive analysis of biomedical image analysis challenges conducted up to now and demonstrate the importance of challenges and show that the lack of quality control has critical consequences.
Abstract: International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now. We demonstrate the importance of challenges and show that the lack of quality control has critical consequences. First, reproducibility and interpretation of the results is often hampered as only a fraction of relevant information is typically provided. Second, the rank of an algorithm is generally not robust to a number of variables such as the test data used for validation, the ranking scheme applied and the observers that make the reference annotations. To overcome these problems, we recommend best practice guidelines and define open research questions to be addressed in the future.

203 citations

Book ChapterDOI
03 Jul 2011
TL;DR: In this paper, a joint generative model of tumor growth and image observation is proposed for analyzing imaging data in patients with glioma, which can be used for integrating information from different multi-modal imaging protocols.
Abstract: Extensive imaging is routinely used in brain tumor patients to monitor the state of the disease and to evaluate therapeutic options. A large number of multi-modal and multi-temporal image volumes is acquired in standard clinical cases, requiring new approaches for comprehensive integration of information from different image sources and different time points. In this work we propose a joint generative model of tumor growth and of image observation that naturally handles multimodal and longitudinal data. We use the model for analyzing imaging data in patients with glioma. The tumor growth model is based on a reaction-diffusion framework. Model personalization relies only on a forward model for the growth process and on image likelihood. We take advantage of an adaptive sparse grid approximation for efficient inference via Markov Chain Monte Carlo sampling. The approach can be used for integrating information from different multi-modal imaging protocols and can easily be adapted to other tumor growth models.

64 citations

Journal ArticleDOI
TL;DR: The resulting consensus can serve as a tool to reduce variability in clinical practices and guide further research for the clinical management of FAI.
Abstract: OBJECTIVES Imaging assessment for the clinical management of femoroacetabular impingement (FAI) syndrome remains controversial because of a paucity of evidence-based guidance and notable variability in clinical practice, ultimately requiring expert consensus. The purpose of this agreement is to establish expert-based statements on FAI imaging, using formal techniques of consensus building. METHODS A validated Delphi method and peer-reviewed literature were used to formally derive consensus among 30 panel members (21 musculoskeletal radiologists and 9 orthopaedic surgeons) from 13 countries. Forty-four questions were agreed on, and recent relevant seminal literature was circulated and classified in five major topics ('General issues', 'Parameters and reporting', 'Radiographic assessment', 'MRI' and 'Ultrasound') in order to produce answering statements. The level of evidence was noted for all statements, and panel members were asked to score their level of agreement with each statement (0 to 10) during iterative rounds. Either 'consensus', 'agreement' or 'no agreement' was achieved. RESULTS Forty-seven statements were generated, and group consensus was reached for 45 (95.7%). Seventeen of these statements were selected as most important for dissemination in advance. There was no agreement for the two statements pertaining to 'Ultrasound'. CONCLUSION Radiographic evaluation is the cornerstone of hip evaluation. An anteroposterior pelvis radiograph and a Dunn 45° view are recommended for the initial assessment of FAI although MRI with a dedicated protocol is the gold standard imaging technique in this setting. The resulting consensus can serve as a tool to reduce variability in clinical practices and guide further research for the clinical management of FAI. KEY POINTS • FAI imaging literature is extensive although often of low level of evidence. • Radiographic evaluation with a reproducible technique is the cornerstone of hip imaging assessment. • MRI with a dedicated protocol is the gold standard imaging technique for FAI assessment.

53 citations

01 Jun 2011
TL;DR: A joint generative model of tumor growth and of image observation that naturally handles multimodal and longitudinal data is proposed that can be used for integrating information from different multi-modal imaging protocols and can be adapted to other tumor growth models.
Abstract: 22nd International Conference, IPMI 2011, Kloster Irsee, Germany, July 3-8, 2011. Proceedings

50 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Two specific computer-aided detection problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification are studied, achieving the state-of-the-art performance on the mediastinal LN detection, and the first five-fold cross-validation classification results are reported.
Abstract: Remarkable progress has been made in image recognition, primarily due to the availability of large-scale annotated datasets and deep convolutional neural networks (CNNs). CNNs enable learning data-driven, highly representative, hierarchical image features from sufficient training data. However, obtaining datasets as comprehensively annotated as ImageNet in the medical imaging domain remains a challenge. There are currently three major techniques that successfully employ CNNs to medical image classification: training the CNN from scratch, using off-the-shelf pre-trained CNN features, and conducting unsupervised CNN pre-training with supervised fine-tuning. Another effective method is transfer learning, i.e., fine-tuning CNN models pre-trained from natural image dataset to medical image tasks. In this paper, we exploit three important, but previously understudied factors of employing deep convolutional neural networks to computer-aided detection problems. We first explore and evaluate different CNN architectures. The studied models contain 5 thousand to 160 million parameters, and vary in numbers of layers. We then evaluate the influence of dataset scale and spatial image context on performance. Finally, we examine when and why transfer learning from pre-trained ImageNet (via fine-tuning) can be useful. We study two specific computer-aided detection (CADe) problems, namely thoraco-abdominal lymph node (LN) detection and interstitial lung disease (ILD) classification. We achieve the state-of-the-art performance on the mediastinal LN detection, and report the first five-fold cross-validation classification results on predicting axial CT slices with ILD categories. Our extensive empirical evaluation, CNN model analysis and valuable insights can be extended to the design of high performance CAD systems for other medical imaging tasks.

4,249 citations

Journal ArticleDOI
TL;DR: An efficient and effective dense training scheme which joins the processing of adjacent image patches into one pass through the network while automatically adapting to the inherent class imbalance present in the data, and improves on the state-of-the‐art for all three applications.

2,842 citations

Journal ArticleDOI
TL;DR: A fast and accurate fully automatic method for brain tumor segmentation which is competitive both in terms of accuracy and speed compared to the state of the art, and introduces a novel cascaded architecture that allows the system to more accurately model local label dependencies.

2,538 citations

Journal ArticleDOI
TL;DR: nnU-Net as mentioned in this paper is a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task.
Abstract: Biomedical imaging is a driver of scientific discovery and a core component of medical care and is being stimulated by the field of deep learning. While semantic segmentation algorithms enable image analysis and quantification in many applications, the design of respective specialized solutions is non-trivial and highly dependent on dataset properties and hardware conditions. We developed nnU-Net, a deep learning-based segmentation method that automatically configures itself, including preprocessing, network architecture, training and post-processing for any new task. The key design choices in this process are modeled as a set of fixed parameters, interdependent rules and empirical decisions. Without manual intervention, nnU-Net surpasses most existing approaches, including highly specialized solutions on 23 public datasets used in international biomedical segmentation competitions. We make nnU-Net publicly available as an out-of-the-box tool, rendering state-of-the-art segmentation accessible to a broad audience by requiring neither expert knowledge nor computing resources beyond standard network training.

2,040 citations

Journal ArticleDOI
TL;DR: This paper proposes an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 ×3 kernels, which allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network.
Abstract: Among brain tumors, gliomas are the most common and aggressive, leading to a very short life expectancy in their highest grade. Thus, treatment planning is a key stage to improve the quality of life of oncological patients. Magnetic resonance imaging (MRI) is a widely used imaging technique to assess these tumors, but the large amount of data produced by MRI prevents manual segmentation in a reasonable time, limiting the use of precise quantitative measurements in the clinical practice. So, automatic and reliable segmentation methods are required; however, the large spatial and structural variability among brain tumors make automatic segmentation a challenging problem. In this paper, we propose an automatic segmentation method based on Convolutional Neural Networks (CNN), exploring small 3 $\times$ 3 kernels. The use of small kernels allows designing a deeper architecture, besides having a positive effect against overfitting, given the fewer number of weights in the network. We also investigated the use of intensity normalization as a pre-processing step, which though not common in CNN-based segmentation methods, proved together with data augmentation to be very effective for brain tumor segmentation in MRI images. Our proposal was validated in the Brain Tumor Segmentation Challenge 2013 database (BRATS 2013), obtaining simultaneously the first position for the complete, core, and enhancing regions in Dice Similarity Coefficient metric (0.88, 0.83, 0.77) for the Challenge data set. Also, it obtained the overall first position by the online evaluation platform. We also participated in the on-site BRATS 2015 Challenge using the same model, obtaining the second place, with Dice Similarity Coefficient metric of 0.78, 0.65, and 0.75 for the complete, core, and enhancing regions, respectively.

1,894 citations