scispace - formally typeset
Search or ask a question
Author

Marc Hodes

Other affiliations: Alcatel-Lucent, Bell Labs, Marc's  ...read more
Bio: Marc Hodes is an academic researcher from Tufts University. The author has contributed to research in topics: Heat sink & Thermal resistance. The author has an hindex of 24, co-authored 116 publications receiving 2351 citations. Previous affiliations of Marc Hodes include Alcatel-Lucent & Bell Labs.


Papers
More filters
Journal ArticleDOI
Tom Krupenkin1, J. Ashley Taylor1, Evelyn N. Wang1, Paul Kolodner1, Marc Hodes1, Todd Salamon1 
31 Jul 2007-Langmuir
TL;DR: Elect electrically controlled fully reversible wetting-dewetting transitions on superhydrophobic nanostructured surfaces have been demonstrated and can provide a new method of dynamically controlling liquid-solid interactions.
Abstract: In this work, electrically controlled fully reversible wetting−dewetting transitions on superhydrophobic nanostructured surfaces have been demonstrated. Droplet behavior can be reversibly switched between the superhydrophobic Cassie−Baxter state and the hydrophilic Wenzel state by the application of electrical voltage and current. The nature of the reversibility mechanism was studied both experimentally and theoretically. The reported results can provide a new method of dynamically controlling liquid−solid interactions.

259 citations

Journal ArticleDOI
TL;DR: A review of fundamental principles and research pertinent to the precipitation of salts and scale control at the elevated temperatures and pressures found in an SCWO reactor can be found in this article.
Abstract: Supercritical water oxidation (SCWO) is an effective technology for treatment of organics and organic components of aqueous wastes. Commercialization of SCWO processes has been hindered by concerns about corrosion and scale buildup/fouling which, when present, must be accommodated by system design and/or operational procedures. Salts are formed during SCWO when acidic solutions are neutralized to reduce corrosion and may also be present in the waste stream itself. Because salts have low solubility in supercritical water (SCW), they precipitate. Precipitated salts often form agglomerates and coat internal surfaces, thereby inhibiting heat transfer from/to exterior surfaces. When scale buildup is left uncontrolled, plugging of transport lines and/or the reactor can occur. The required cleaning can result in substantial and costly downtime in the SCWO process. General principles and research relevant to SCWO have been reviewed elsewhere. A review of the many technologies available to control scale during SCWO is given in the companion paper by Marrone et al. [J. Supercrit. Fluids (in press)]. Presented here is a review of fundamental principles and research pertinent to the precipitation of salts and scale control at the elevated temperatures and pressures found in an SCWO reactor. First, SCWO is introduced and the physics leading to scale buildup during SCWO is discussed. Next, the phase diagrams of model salt–water systems at relevant conditions are presented. Then, the many phenomena which complicate modeling of heat transfer in SCW (buoyancy, rapidly varying thermophysical properties, etc.) are reviewed and a set of correlations to calculate heat transfer coefficients is provided. Finally, the limited number of controlled experimental studies on scale buildup during SCWO are reviewed.

226 citations

Journal ArticleDOI
TL;DR: Several commercial approaches have been developed and/or used to control salt precipitation and solids buildup in supercritical water oxidation (SCWO) systems, including reverse flow tank and transpiring wall as mentioned in this paper.
Abstract: Despite the potential of supercritical water oxidation (SCWO) as a viable technology for organic waste destruction, its commercial development has been hindered by the problems of corrosion and salt precipitation/solids buildup. The extremely low solubility of polar inorganic salts in the supercritical water environment causes salts present in the feed, or formed during reaction, to precipitate inside the reactor. If left unchecked, these salts can rapidly accumulate on reactor walls or process surfaces and form plugs, causing expensive and frequent downtime of the SCWO system. Other solids such as oxides exhibit low solubility in water over the range from ambient to supercritical conditions and, although they have much less tendency to adhere to process surfaces, may still hinder operations if not accommodated. Many wastes will have a combination of salt-type and oxide-type solids, and may have an intermediate tendency to stick to process surfaces. Many of the companies that have attempted to commercialize the SCWO technology over the past two decades have developed innovative approaches to dealing with the corrosion and salt precipitation/solids buildup problems. These are often the distinguishing features of each company's SCWO process. This paper objectively reviews several commercial approaches that have been developed and/or used to control salt precipitation and solids buildup in SCWO systems. The approaches reviewed consist of specific reactor designs and operating techniques, and include the following: reverse flow tank reactor with brine pool, transpiring wall reactor, adsorption/reaction on a fluidized solid phase, reverse flow tubular reactor, centrifuge reactor, high velocity flow, mechanical brushing, rotating scraper, reactor flushing, additives, low turbulence/homogeneous precipitation, crossflow filtration, density separation, and extreme pressure operation. Recent commercial SCWO applications utilizing these approaches are also discussed. A companion paper by Hodes et al. (J. Supercrit. Fluid., see this volume) reviews fundamental principles and research pertinent to scale control in SCWO processes.

172 citations

Proceedings ArticleDOI
05 Jun 2006
TL;DR: In this article, large-area superhydrophobic test surfaces have been fabricated and tested in a water tunnel, measuring drag in both the laminar and transitional regimes at velocities up to 1.4 m/s.
Abstract: Superhydrophobic surfaces are known to exhibit reduced viscous drag due to "slip" associated with a layer of air trapped at the liquid-solid interface. It is expected that this slip will lead to reduced turbulent skin-friction drag in external flows at higher Reynolds numbers in both the laminar and turbulent regimes. Results are presented from experiments exploring this effect. Large-area Superhydrophobic test surfaces have been fabricated and tested in a water tunnel, measuring drag in both the laminar and transitional regimes at velocities up to 1.4 m/s. Drag reduction of approximately 50% is observed for laminar flow. Lower levels of drag reduction are observed at higher speeds after the flow has transitioned to turbulence.

117 citations

Patent
15 Nov 2005
TL;DR: In this article, a heat transfer device consisting of one or more microchannels suitable for containing a heat-transfer fluid, with protruding structures on at least one inner surface of the channels configured to affect flow of the heat transfer fluid through the channels.
Abstract: Techniques for heat transfer are provided. In one aspect of the invention, a heat-transfer device is provided. The heat-transfer device comprises one or more microchannels suitable for containing a heat-transfer fluid, one or more of the microchannels having protruding structures on at least one inner surface thereof configured to affect flow of the heat-transfer fluid through the one or more microchannels. The structures may comprise posts coated with a hydrophobic coating.

94 citations


Cited by
More filters
Journal ArticleDOI
07 Dec 2007-Science
TL;DR: It is shown how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.
Abstract: Understanding the complementary roles of surface energy and roughness on natural nonwetting surfaces has led to the development of a number of biomimetic superhydrophobic surfaces, which exhibit apparent contact angles with water greater than 150 degrees and low contact angle hysteresis. However, superoleophobic surfaces-those that display contact angles greater than 150 degrees with organic liquids having appreciably lower surface tensions than that of water-are extremely rare. Calculations suggest that creating such a surface would require a surface energy lower than that of any known material. We show how a third factor, re-entrant surface curvature, in conjunction with chemical composition and roughened texture, can be used to design surfaces that display extreme resistance to wetting from a number of liquids with low surface tension, including alkanes such as decane and octane.

2,657 citations

Journal ArticleDOI
TL;DR: In this article, the roughness of a solid is discussed, and it is shown that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness.
Abstract: We discuss in this review how the roughness of a solid impacts its wettability. We see in particular that both the apparent contact angle and the contact angle hysteresis can be dramatically affected by the presence of roughness. Owing to the development of refined methods for setting very well-controlled micro- or nanotextures on a solid, these effects are being exploited to induce novel wetting properties, such as spontaneous filmification, superhydrophobicity, superoleophobicity, and interfacial slip, that could not be achieved without roughness.

2,219 citations

Journal ArticleDOI
TL;DR: Several biomass hydrothermal conversion processes are in development or demonstration as mentioned in this paper, which are generally lower temperature (200-400 °C) reactions which produce liquid products, often called bio-oil or bio-crude.
Abstract: Hydrothermal technologies are broadly defined as chemical and physical transformations in high-temperature (200–600 °C), high-pressure (5–40 MPa) liquid or supercritical water. This thermochemical means of reforming biomass may have energetic advantages, since, when water is heated at high pressures a phase change to steam is avoided which avoids large enthalpic energy penalties. Biological chemicals undergo a range of reactions, including dehydration and decarboxylation reactions, which are influenced by the temperature, pressure, concentration, and presence of homogeneous or heterogeneous catalysts. Several biomass hydrothermal conversion processes are in development or demonstration. Liquefaction processes are generally lower temperature (200–400 °C) reactions which produce liquid products, often called “bio-oil” or “bio-crude”. Gasification processes generally take place at higher temperatures (400–700 °C) and can produce methane or hydrogen gases in high yields.

1,822 citations

Journal ArticleDOI
TL;DR: In this paper, the theoretical mechanisms of the wetting of rough surfaces are presented followed by the characterization of natural leaf surfaces and a comprehensive review is presented on artificial super-hydrophobic surfaces fabricated using various fabrication techniques and the influence of micro-, nano-and hierarchical structures on superhydrophobicity, self-cleaning, low adhesion, and drag reduction.

1,610 citations