scispace - formally typeset
Search or ask a question
Author

Marc Ibrahim

Bio: Marc Ibrahim is an academic researcher from Saint Joseph's University. The author has contributed to research in topics: Radio resource management & Wireless network. The author has an hindex of 13, co-authored 57 publications receiving 573 citations. Previous affiliations of Marc Ibrahim include Centre national de la recherche scientifique & Saint Joseph University.


Papers
More filters
Journal ArticleDOI
TL;DR: A network-assisted approach to optimal, learning-based, and heuristic policies, such as blocking probability and average throughput, and a reinforcement learning approach is introduced to derive what to signal to mobiles.
Abstract: When several radio access technologies (e.g., HSPA, LTE, WiFi, and WiMAX) cover the same region, deciding to which one mobiles connect is known as the Radio Access Technology (RAT) selection problem. To reduce network signaling and processing load, decisions are generally delegated to mobile users. Mobile users aim to selfishly maximize their utility. However, as they do not cooperate, their decisions may lead to performance inefficiency. In this paper, to overcome this limitation, we propose a network-assisted approach. The network provides information for the mobiles to make more accurate decisions. By appropriately tuning network information, user decisions are globally expected to meet operator objectives, avoiding undesirable network states. Deriving network information is formulated as a semi-Markov decision process (SMDP), and optimal policies are computed using the Policy Iteration algorithm. Also, and since network parameters may not be easily obtained, a reinforcement learning approach is introduced to derive what to signal to mobiles. The performances of optimal, learning-based, and heuristic policies, such as blocking probability and average throughput, are analyzed. When tuning thresholds are pertinently set, our heuristic achieves performance very close to the optimal solution. Moreover, although it provides lower performance, our learning-based algorithm has the crucial advantage of requiring no prior parameterization.

89 citations

Journal ArticleDOI
TL;DR: Temperature-independent subwavelength grating waveguides with a periodic composite core composed of alternating regions of silicon and SU-8 polymer with the possibility of complete cancellation of the silicon waveguide temperature dependence are demonstrated.
Abstract: We demonstrate, by experiment and numerical calculations, temperature-independent subwavelength grating waveguides with a periodic composite core composed of alternating regions of silicon and SU-8 polymer. The polymer has a negative thermo-optic (TO) material coefficient that cancels the large positive TO effect of the silicon. Measurements and Bloch mode calculations were carried out over a range of silicon-polymer duty ratios. The lowest measured TO coefficient at a wavelength of 1550 nm is 1.8×10(-6) K(-1); 2 orders of magnitude smaller than a conventional silicon photonic wire waveguide. Calculations predict the possibility of complete cancellation of the silicon waveguide temperature dependence.

45 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on Inter-Cell Interference Coordination techniques is performed, and the most suitable ICIC technique for each network scenario is identified under several parameters such as different network loads, radio conditions, and user distributions.
Abstract: LTE networks' main challenge is to efficiently use the available spectrum, and to provide satisfying quality of service for mobile users. However, using the same bandwidth among adjacent cells leads to occurrence of Inter-cell Interference especially at the cell-edge. Basic interference mitigation approaches consider bandwidth partitioning techniques between adjacent cells, such as frequency reuse of factor m schemes, to minimize cell-edge interference. Although SINR values are improved, such techniques lead to significant reduction in the maximum achievable data rate. Several improvements have been proposed to enhance the performance of frequency reuse schemes, where restrictions are made on resource blocks usage, power allocation, or both. Nevertheless, bandwidth partitioning methods still affect the maximum achievable throughput. In this proposal, we intend to perform a comprehensive survey on Inter-Cell Interference Coordination (ICIC) techniques, and we study their performance while putting into consideration various design parameters. This study is implemented throughout intensive system level simulations under several parameters such as different network loads, radio conditions, and user distributions. Simulation results show the advantages and the limitations of each technique compared to frequency reuse-1 model. Thus, we are able to identify the most suitable ICIC technique for each network scenario.

44 citations

Journal ArticleDOI
TL;DR: The realization of temperature-independent BSWG waveguides for both polarizations is demonstrated numerically and experimentally and the dependence of the effective TO coefficient of BSWg waveguide on both the bridge width and grating duty cycle is investigated.
Abstract: In this paper, athermal silicon waveguides using bridged subwavelength grating (BSWG) structures are proposed and investigated. The realization of temperature-independent BSWG waveguides for both polarizations is demonstrated numerically and experimentally. SU-8 polymer is used as the cladding material to compensate for the positive thermo-optic (TO) coefficient (dn/dT) of silicon. We investigate the dependence of the effective TO coefficient of BSWG waveguides on both the bridge width and grating duty cycle. The BSWG waveguides have a width of 490 nm, a height of 260 nm, and a grating pitch of 250 nm. Athermal behavior is achieved for both the transverse-magnetic (TM) and the transverse-electric (TE) polarized light for a variety of bridge width and duty cycle combinations. Furthermore, the BSWGs can be designed to be athermal for both TE and TM polarization simultaneously.

36 citations

Proceedings Article
16 Apr 2013
TL;DR: This paper tackles the radio access technology (RAT) selection, a key CRRM functionality, and proposes a hybrid decision framework that dynamically integrates operator objectives and user preferences that outperforms existing solutions and maximizes user utility.
Abstract: In heterogeneous wireless networks, different radio access technologies are integrated and may be jointly managed. To optimize composite network performance and capacity, Common Radio Resource Management (CRRM) mechanisms need to be defined. This paper tackles the access technology selection -- a key CRRM functionality -- and proposes a hybrid decision framework to dynamically integrate operator objectives and user preferences. Mobile users make their selection decision based on their needs and preferences as well as on the cost and QoS information signaled by the network. Appropriate decisional information should then be derived so that the network better utilizes its radio resources, while mobile users maximize their own utility. We thus present two tuning policies, namely the staircase and the slope tuning policies, to dynamically modulate this information. Simulation results illustrate the gain from using our tuning policies in comparison with a static one: they lead to better network performance, larger operator gain and higher user satisfaction.

33 citations


Cited by
More filters
01 Jan 2007
TL;DR: In this paper, the authors provide updates to IEEE 802.16's MIB for the MAC, PHY and asso-ciated management procedures in order to accommodate recent extensions to the standard.
Abstract: This document provides updates to IEEE Std 802.16's MIB for the MAC, PHY and asso- ciated management procedures in order to accommodate recent extensions to the standard.

1,481 citations

Journal ArticleDOI
TL;DR: It is shown that the optimum fraction of traffic offloaded to maximize SINR coverage is not in general the same as the one that maximizes rate coverage, defined as the fraction of users achieving a given rate.
Abstract: Pushing data traffic from cellular to WiFi is an example of inter radio access technology (RAT) offloading. While this clearly alleviates congestion on the over-loaded cellular network, the ultimate potential of such offloading and its effect on overall system performance is not well understood. To address this, we develop a general and tractable model that consists of M different RATs, each deploying up to K different tiers of access points (APs), where each tier differs in transmit power, path loss exponent, deployment density and bandwidth. Each class of APs is modeled as an independent Poisson point process (PPP), with mobile user locations modeled as another independent PPP, all channels further consisting of i.i.d. Rayleigh fading. The distribution of rate over the entire network is then derived for a weighted association strategy, where such weights can be tuned to optimize a particular objective. We show that the optimum fraction of traffic offloaded to maximize SINR coverage is not in general the same as the one that maximizes rate coverage, defined as the fraction of users achieving a given rate.

799 citations

Journal ArticleDOI
TL;DR: Sub-wavelength structures with a subwavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves as discussed by the authors, and their applications include anti-reflective coatings, polarization rotators, high-efficiency fiber-chip cou-plers, spectrometers, highreflectivity mirrors, athermal waveg- uides, multimode interference couplers.
Abstract: Periodic structures with a sub-wavelength pitch have been known since Hertz conducted his first experiments on the polarization of electromagnetic waves. While the use of these structures in waveguide optics was proposed in the 1990s, it has been with the more recent developments of silicon photonics and high-precision lithography techniques that sub-wavelength structures have found widespread application in the field of pho- tonics. This review first provides an introduction to the physics of sub-wavelength structures. An overview of the applications of sub-wavelength structures is then given including: anti-reflective coatings, polarization rotators, high-efficiency fiber-chip cou- plers, spectrometers, high-reflectivity mirrors, athermal waveg- uides, multimode interference couplers, and dispersion engi- neered, ultra-broadband waveguide couplers among others. Particular attention is paid to providing insight into the design strategies for these devices. The concluding remarks provide an outlook on the future development of sub-wavelength structures and their impact in photonics.

496 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on RA in HetNets for 5G communications is provided and two potential structures for 6G communications are provided, such as a learning-based RA structure and a control- based RA structure.
Abstract: In the fifth-generation (5G) mobile communication system, various service requirements of different communication environments are expected to be satisfied. As a new evolution network structure, heterogeneous network (HetNet) has been studied in recent years. Compared with homogeneous networks, HetNets can increase the opportunity in the spatial resource reuse and improve users’ quality of service by developing small cells into the coverage of macrocells. Since there is mutual interference among different users and the limited spectrum resource in HetNets, however, efficient resource allocation (RA) algorithms are vitally important to reduce the mutual interference and achieve spectrum sharing. In this article, we provide a comprehensive survey on RA in HetNets for 5G communications. Specifically, we first introduce the definition and different network scenarios of HetNets. Second, RA models are discussed. Then, we present a classification to analyze current RA algorithms for the existing works. Finally, some challenging issues and future research trends are discussed. Accordingly, we provide two potential structures for 6G communications to solve the RA problems of the next-generation HetNets, such as a learning-based RA structure and a control-based RA structure. The goal of this article is to provide important information on HetNets, which could be used to guide the development of more efficient techniques in this research area.

321 citations

Book ChapterDOI
07 Feb 2008
TL;DR: In this article, product definition for broadband wireless systems technology drivers Evolving Wireless Broadband Market Segments Open Systems and Intelligence at the Edge Radio Network System Engineering References are discussed. But the focus of this paper is not on wireless networks.
Abstract: This chapter contains sections titled: Product Definition for Broadband Wireless Systems Technology Drivers Evolving Wireless Broadband Market Segments Open Systems and Intelligence at the Edge Radio Network System Engineering References

293 citations