scispace - formally typeset
Search or ask a question
Author

Marc J. Defant

Bio: Marc J. Defant is an academic researcher from University of South Florida. The author has contributed to research in topics: Subduction & Mantle (geology). The author has an hindex of 33, co-authored 44 publications receiving 10257 citations. Previous affiliations of Marc J. Defant include Sewanee: The University of the South.

Papers
More filters
Journal ArticleDOI
01 Oct 1990-Nature
TL;DR: In this paper, the trace-element geochemical properties of the adakites (termed "adakites") of modern island and continental arcs are shown to be consistent with a derivation by partial melting of the subducted slab, and in particular that subducting lithosphere younger than 25 Myr seems to be required for slab melting to occur.
Abstract: MOST volcanic rocks in modern island and continental arcs are probably derived from melting of the mantle wedge, induced by hydrous fluids released during dehydration reactions in the subducted lithosphere1. Arc tholeiitic and calc-alkaline basaltic magmas are produced by partial melting of the mantle, and then evolve by crystal fractionation (with or without assimilation and magma mixing) to more silicic magmas2—basalt, andesite, dacite and rhyolite suites. Although most arc magmas are generated by these petrogenetic processes, rocks with the geochemical characteristics of melts derived directly from the subducted lithosphere are present in some modern arcs where relatively young and hot lithosphere is being subducted. These andesites, dacites and sodic rhyolites (dacites seem to be the most common products) or their intrusive equivalents (tonalites and trondhjemites) are usually not associated with parental basaltic magmas3. Here we show that the trace-element geochemistry of these magmas (termed 'adakites') is consistent with a derivation by partial melting of the subducted slab, and in particular that subducting lithosphere younger than 25 Myr seems to be required for slab melting to occur.

3,524 citations

Journal ArticleDOI
TL;DR: In this paper, the authors introduced the importance of subducted oceanic crustal age on arc petrogenesis and demonstrated that Archean TTD crustal generation processes are also present in selected high-Al Phanerozoic TTD terranes.
Abstract: The petrogenesis of trondhjemite-tonalite-dacite (TTD) involves all major petrologic models in various tectonic settings. A specific subtype of TTD, high-Al type, is the one most commonly associated with Archean gneiss terranes. During the Archean, continental crust formation was operating at an elevated rate relative to the Phanerozoic, and the generation of high-Al TTD played an integral role in its nucleation and growth. High heat flow, rapid convection, and subduction of hotter, smaller plates were unique tectonic elements to the Archean which optimized conditions required for transformation of subducted oceanic crust into sial via partial melting. Anatexis of Archean mid-ocean ridge basalt (MORB) under eclogitic to garnet amphibolitic conditions produced weakly peraluminous to metaluminous high-Al TTD with low heavy rare earth elements (HREE), Y, Nb, K/Rb, and Rb/Sr and high La/Yb and Sr/Y. This study demonstrates that Archean TTD crustal generation processes are also present in selected high-Al Phanerozoic TTD terranes. The Cenozpic high-Al TTD suites are commonly found in tectonic settings which are thought to recreate the elevated Archean thermal gradients, i.e., at sites of young, hot oceanic plate subduction. These relationships imply a petrologic continuity of TTD generation through time. A fertile zone of melting is envisioned at 23–26 kbar (75–85 km) and 700–775°C, where wet partial melting of the subducting slab occurs concurrently with dehydration reactions. At this depth, the converting mantle wedge continuously feeds hot mantle material to the wedge-slab interface, creating strong temperature gradients, intraslab fluid migration, and slab melting. In summary, in modern arc terranes where young ( 30 Ma) oceanic crust is subducted, mantle-derived magmas are dominant, giving rise to basaltandesite-dacite-rhyolite (BADR) fractionation suites. This study introduces the importance of subducted oceanic crustal age on arc petrogenesis.

1,351 citations

Journal ArticleDOI
01 Dec 2002-Geology
TL;DR: In this paper, geochemical and isotopic data for Early Cretaceous Anjishan adakitic intrusive rocks that are in a continental setting unrelated to subduction were reported.
Abstract: To the best of our knowledge, modern adakites have not been documented in a nonarc environment. We report geochemical and isotopic data for Early Cretaceous Anjishan adakitic intrusive rocks that are in a continental setting unrelated to subduction. The Anjishan adakitic intrusive rocks, which are exposed in the Ningzhen area of east China, have high Sr/Y and La/Yb ratios coupled with low Yb and Y as well as relatively high MgO contents and Mg numbers (Mg#; 0.4-0.6), similar to products from slab melting. However, low ∈ N d ( t ) values (-6.8 to-9.7) and high ( 8 7 Sr/ 8 6 Sr) i (0.7053-0.7066) are inconsistent with an origin by slab melting. The tectonics and geochemistry lead us to conclude that adakitic magmas were most likely derived from partial melting of mafic material at the base of the continental crust. High Sr/Y and La/Yb ratios of the adakitic intrusive rocks suggest that garnet was stable as a residual phase during partial melting, implying that the crustal thickness exceeded 40 km in the Early Cretaceous. The present thickness of the crust in the Ningzhen area is only 30 km, and therefore the crust appears to have been thinned by at least ∼10 km since the Early Cretaceous. The relatively high MgO contents and Mg# of the Anjishan intrusive rocks suggest that adakitic magmas interacted with mantle rocks, possibly coinciding with lower-crustal delamination, which would also account for the observed thinning.

813 citations

Journal ArticleDOI
TL;DR: In this article, the authors show that high-Al TTD melts are produced by high-pressure (≥ 5 kbar) partial melting of basalt, leaving a restite assemblage of garnet + clinopyroxene ± hornblende.
Abstract: The prospect of partial melting of the subducted oceanic crust to produce arc magmatism has been debated for over 30 years. Debate has centred on the physical conditions of slab melting and the lack of a definitive, unambiguous geochemical signature and petrogenetic process. Experimental partial melting data for basalt over a wide range of pressures (1–32 kbar) and temperatures (700–1150°C) have shown that melt compositions are primarily trondhjemite–tonalite–dacite (TTD). High-Al (> 15% Al 2 O 3 at the 70% SiO 2 level) TTD melts are produced by high-pressure (≥ 5 kbar) partial melting of basalt, leaving a restite assemblage of garnet + clinopyroxene ± hornblende. A specific Cenozoic high-Al TTD (adakite) contains lower Y, Yb and Sc and higher Sr, Sr/Y, La/Yb and.Zr/Sm relative to other TTD types and is interpreted to represent a slab melt under garnet amphibolite to eclogite conditions. High-Al TTD with an adakite-like geochemical character is prevalent in the Archean as the result of a higher geotherm that facilitated slab melting. Cenozoic adakite localities are commonly associated with the subduction of young ( −1 ) conducive for slab dehydration melting. Viable alternative or supporting tectonic effects that may enhance slab melting include highly oblique convergence and resultant high shear stresses and incipient subduction into a pristine hot mantle wedge. The minimum P–T conditions for slab melting are interpreted to be 22–26 kbar (75–85 km depth) and 750–800°C. This P–T regime is framed by the hornblende dehydration, 10°C/km, and wet basalt melting curves and coincides with numerous potential slab dehydration reactions, such as tremolite, biotite + quartz, serpentine, talc, Mg-chloritoid, paragonite, clinohumite and talc + phengite. Involvement of overthickened (>50 km) lower continental crust either via direct partial melting or as a contaminant in typical mantle wedge-derived arc magmas has been presented as an alternative to slab melting. However, the intermediate to felsic volcanic and plutonic rocks that involve the lower crust are more highly potassic, enriched in large ion lithophile elements and elevated in Sr isotopic values relative to Cenozoic adakites. Slab-derived adakites, on the other hand, ascend into and react with the mantle wedge and become progressively enriched in MgO, Cr and Ni while retaining their slab melt geochemical signature. Our studies in northern Kamchatka, Russia provide an excellent case example for adakite-mantle interaction and a rare glimpse of trapped slab melt veinlets in Na-metasomatised mantle xenoliths.

608 citations

Journal ArticleDOI
TL;DR: The Kamchatka arc (Russia) is divided into three segments by major sub-latitudinal fault zones (crustal discontinuities) as mentioned in this paper, where the southern (SS) and central (CS) segments are associated with the subduction of old Pacific lithosphere, whereas the northern, inactive segment (NS) was formed during westward subduction in young (< 15 Ma) Komandorsky Basin oceanic crust.

487 citations


Cited by
More filters
Book ChapterDOI
TL;DR: In this paper, the present-day composition of the continental crust, the methods employed to derive these estimates, and the implications of continental crust composition for the formation of the continents, Earth differentiation, and its geochemical inventories are discussed.
Abstract: This chapter reviews the present-day composition of the continental crust, the methods employed to derive these estimates, and the implications of the continental crust composition for the formation of the continents, Earth differentiation, and its geochemical inventories. We review the composition of the upper, middle, and lower continental crust. We then examine the bulk crust composition and the implications of this composition for crust generation and modification processes. Finally, we compare the Earth's crust with those of the other terrestrial planets in our solar system and speculate about what unique processes on Earth have given rise to this unusual crustal distribution.

7,831 citations

Journal ArticleDOI
TL;DR: A survey of the dimensions and composition of the present continental crust is given in this paper, where it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons).
Abstract: A survey is given of the dimensions and composition of the present continental crust. The abundances of immobile elements in sedimentary rocks are used to establish upper crustal composition. The present upper crustal composition is attributed largely to intracrustal differentiation resulting in the production of granites senso lato. Underplating of the crust by ponded basaltic magmas is probably a major source of heat for intracrustal differentiation. The contrast between the present upper crustal composition and that of the Archean upper crust is emphasized. The nature of the lower crust is examined in the light of evidence from granulites and xenoliths of lower crustal origin. It appears that the protoliths of most granulite facies exposures are more representative of upper or middle crust and that the lower crust has a much more basic composition than the exposed upper crust. There is growing consensus that the crust grows episodically, and it is concluded that at least 60% of the crust was emplaced by the late Archean (ca. 2.7 eons, or 2.7 Ga). There appears to be a relationship between episodes of continental growth and differentiation and supercontinental cycles, probably dating back at least to the late Archean. However, such cycles do not explain the contrast in crustal compositions between Archean and post-Archean. Mechanisms for deriving the crust from the mantle are considered, including the role of present-day plate tectonics and subduction zones. It is concluded that a somewhat different tectonic regime operated in the Archean and was responsible for the growth of much of the continental crust. Archean tonalites and trond-hjemites may have resulted from slab melting and/or from melting of the Archean mantle wedge but at low pressures and high temperatures analogous to modern boninites. In contrast, most andesites and subduction-related rocks, now the main contributors to crustal growth, are derived ultimately from the mantle wedge above subduction zones. The cause of the contrast between the processes responsible for Archean and post-Archean crustal growth is attributed to faster subduction of younger, hotter oceanic crust in the Archean (ultimately due to higher heat flow) compared with subduction of older, cooler oceanic crust in more recent times. A brief survey of the causes of continental breakup reveals that neither plume nor lithospheric stretching is a totally satisfactory explanation. Speculations are presented about crustal development before 4000 m.y. ago. The terrestrial continental crust appears to be unique compared with crusts on other planets and satellites in the solar system, ultimately a consequence of the abundant free water on the Earth.

3,656 citations

Journal ArticleDOI
01 Oct 1990-Nature
TL;DR: In this paper, the trace-element geochemical properties of the adakites (termed "adakites") of modern island and continental arcs are shown to be consistent with a derivation by partial melting of the subducted slab, and in particular that subducting lithosphere younger than 25 Myr seems to be required for slab melting to occur.
Abstract: MOST volcanic rocks in modern island and continental arcs are probably derived from melting of the mantle wedge, induced by hydrous fluids released during dehydration reactions in the subducted lithosphere1. Arc tholeiitic and calc-alkaline basaltic magmas are produced by partial melting of the mantle, and then evolve by crystal fractionation (with or without assimilation and magma mixing) to more silicic magmas2—basalt, andesite, dacite and rhyolite suites. Although most arc magmas are generated by these petrogenetic processes, rocks with the geochemical characteristics of melts derived directly from the subducted lithosphere are present in some modern arcs where relatively young and hot lithosphere is being subducted. These andesites, dacites and sodic rhyolites (dacites seem to be the most common products) or their intrusive equivalents (tonalites and trondhjemites) are usually not associated with parental basaltic magmas3. Here we show that the trace-element geochemistry of these magmas (termed 'adakites') is consistent with a derivation by partial melting of the subducted slab, and in particular that subducting lithosphere younger than 25 Myr seems to be required for slab melting to occur.

3,524 citations

Journal ArticleDOI
TL;DR: In this article, the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC).
Abstract: We present the first finding of continental crust-derived Precambrian zircons in garnet/spinel pyroxenite veins within mantle xenoliths carried by the Neogene Hannuoba basalt in the central zone of the North China Craton (NCC). Petrological and geochemical features indicate that these mantle-derived composite xenoliths were formed by silicic melt^lherzolite interaction. The Precambrian zircon ages can be classified into three age groups of 2·4^2·5 Ga, 1·6^2·2 Ga and 0·6^1·2 Ga, coinciding with major geological events in the NCC. These Precambrian zircons fall in the field of continental granitoid rocks in plots of U/Yb vs Hf and Y. Their igneous-type REE patterns and metamorphic zircon type CL images indicate that they were not crystallized during melt^peridotite interaction and subsequent high-pressure metamorphism.The 2·5 Ga zircons have positive eHf(t) values (2·9^10·6), whereas the younger Precambrian zircons are dominated by negative eHf(t) values, indicating an ancient continental crustal origin.These observations suggest that the Precambrian zircons were xenocrysts that survived melting of recycled continental crustal rocks and were then injected with silicate melt into the host peridotite. In addition to the Precambrian zircons, igneous zircons of 315 3 Ma (2 ), 80^170 Ma and 48^64 Ma were separated from the garnet/spinel pyroxenite veins; these provide evidence for lower continental crust and oceanic crust recycling-induced multi-episodic melt^peridotite interactions in the central zone of the NCC. The combination of the positive eHf(t) values (2·91^24·6) of the 315 Ma zircons with the rare occurrence of 302^324 Ma subduction-related diorite^granite plutons in the northern margin of the NCC implies that the 315 Ma igneous zircons might record melt^peridotite interactions in the lithospheric mantle induced by Palaeo-Asian oceanic crust subduction. Igneous zircons of age 80^170 Ma generally coexist with the Precambrian metamorphic zircons and have lower Ce/Yb and Th/U ratios, higher U/Yb ratios and greater negative Eu anomalies.The eHf(t) values of these zircons vary greatly from ^47·6 to 24·6.The 170^110 Ma zircons are generally characterized by negative eHf(t) values, whereas the 110^100 Ma zircons have positive eHf(t) values.These observations suggest that melt^peridotite interactions at 80^170 Ma were induced by partial melting of recycled continental crust. The 48^64 Ma igneous zircons are characterized by negligible Ce anomalies, unusually high REE, U and Th contents, and positive eHf(t) values.These features imply that the melt^peridotite interactions at 48^64 Ma could be associated with a depleted mantle-derived carbonate melt or fluid.

2,753 citations