scispace - formally typeset
Search or ask a question
Author

Marc J. E. C. van der Maarel

Bio: Marc J. E. C. van der Maarel is an academic researcher from University of Groningen. The author has contributed to research in topics: Starch & Glycoside hydrolase. The author has an hindex of 30, co-authored 66 publications receiving 4619 citations. Previous affiliations of Marc J. E. C. van der Maarel include Netherlands Organisation for Applied Scientific Research.


Papers
More filters
Journal ArticleDOI
Herman Jan Pel1, Johannes H. de Winde1, Johannes H. de Winde2, David B. Archer3, Paul S. Dyer3, Gerald Hofmann4, Peter J. Schaap5, Geoffrey Turner6, Ronald P. de Vries7, Richard Albang8, Kaj Albermann8, Mikael Rørdam Andersen4, Jannick Dyrløv Bendtsen9, Jacques A.E. Benen5, Marco A. van den Berg1, Stefaan Breestraat1, Mark X. Caddick10, Roland Contreras11, Michael Cornell12, Pedro M. Coutinho13, Etienne Danchin13, Alfons J. M. Debets5, Peter J. T. Dekker1, Piet W.M. van Dijck1, Alard Van Dijk1, Lubbert Dijkhuizen14, Arnold J. M. Driessen14, Christophe d'Enfert15, Steven Geysens11, Coenie Goosen14, Gert S.P. Groot1, Piet W. J. de Groot16, Thomas Guillemette17, Bernard Henrissat13, Marga Herweijer1, Johannes Petrus Theodorus Wilhelmus Van Den Hombergh1, Cees A. M. J. J. van den Hondel18, René T. J. M. van der Heijden19, Rachel M. van der Kaaij14, Frans M. Klis16, Harrie J. Kools5, Christian P. Kubicek, Patricia Ann van Kuyk18, Jürgen Lauber, Xin Lu, Marc J. E. C. van der Maarel, Rogier Meulenberg1, Hildegard Henna Menke1, Martin Mortimer10, Jens Nielsen4, Stephen G. Oliver12, Maurien M.A. Olsthoorn1, K. Pal20, K. Pal5, Noël Nicolaas Maria Elisabeth Van Peij1, Arthur F. J. Ram18, Ursula Rinas, Johannes Andries Roubos1, Cornelis Maria Jacobus Sagt1, Monika Schmoll, Jibin Sun, David W. Ussery4, János Varga20, Wouter Vervecken11, Peter J.J. Van De Vondervoort18, Holger Wedler, Han A. B. Wösten7, An-Ping Zeng, Albert J. J. van Ooyen1, Jaap Visser, Hein Stam1 
TL;DR: The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid, and the sequenced genome revealed a large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors.
Abstract: The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis.

1,161 citations

Journal ArticleDOI
TL;DR: The alpha-amylase family of glycosyl hydrolases as discussed by the authors is one of the most common types of enzymes used in industrial applications and has a (beta/alpha) 8-barrel structure with conserved amino acid residues.

1,136 citations

Journal ArticleDOI
TL;DR: Sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile to examine processes of methane consumption and oxidation and indicate that this process is widespread in Mediterranean mud volcanooes and in some localized settings is the predominant microbiological process.
Abstract: Although abundant geochemical data indicate that anaerobic methane oxidation occurs in marine sediments, the linkage to specific microorganisms remains unclear. In order to examine processes of methane consumption and oxidation, sediment samples from mud volcanoes at two distinct sites on the Mediterranean Ridge were collected via the submersible Nautile. Geochemical data strongly indicate that methane is oxidized under anaerobic conditions, and compound-specific carbon isotope analyses indicate that this reaction is facilitated by a consortium of archaea and bacteria. Specifically, these methane-rich sediments contain high abundances of methanogen-specific biomarkers that are significantly depleted in 13C (δ13C values are as low as −95‰). Biomarkers inferred to derive from sulfate-reducing bacteria and other heterotrophic bacteria are similarly depleted. Consistent with previous work, such depletion can be explained by consumption of 13C-depleted methane by methanogens operating in reverse and as part a consortium of organisms in which sulfate serves as the terminal electron acceptor. Moreover, our results indicate that this process is widespread in Mediterranean mud volcanoes and in some localized settings is the predominant microbiological process.

363 citations

Journal ArticleDOI
TL;DR: A model is proposed for the organization of the sugar-binding subsites in the two Lb.
Abstract: Bacterial fructosyltransferase (FTF) enzymes synthesize fructan polymers from sucrose. FTFs catalyse two different reactions, depending on the nature of the acceptor, resulting in: (i) transglycosylation, when the growing fructan chain (polymerization), or mono- and oligosaccharides (oligosaccharide synthesis), are used as the acceptor substrate; (ii) hydrolysis, when water is used as the acceptor. Lactobacillus reuteri 121 levansucrase (Lev) and inulosucrase (Inu) enzymes are closely related at the amino acid sequence level (86 % similarity). Also, the eight amino acid residues known to be involved in catalysis and/or sucrose binding are completely conserved. Nevertheless, these enzymes differ markedly in their reaction and product specificities, i.e. in β(2→6)- versus β(2→1)-glycosidic-bond specificity (resulting in levan and inulin synthesis, respectively), and in the ratio of hydrolysis versus transglycosylation activities [resulting in glucose and fructooligosaccharides (FOSs)/polymer synthesis, respectively]. The authors report a detailed characterization of the transglycosylation reaction products synthesized by the Lb. reuteri 121 Lev and Inu enzymes from sucrose and related oligosaccharide substrates. Lev mainly converted sucrose into a large levan polymer (processive reaction), whereas Inu synthesized mainly a broad range of FOSs of the inulin type (non-processive reaction). Interestingly, the two FTF enzymes were also able to utilize various inulin-type FOSs (1-kestose, 1,1-nystose and 1,1,1-kestopentaose) as substrates, catalysing a disproportionation reaction; to the best of our knowledge, this has not been reported for bacterial FTF enzymes. Based on these data, a model is proposed for the organization of the sugar-binding subsites in the two Lb. reuteri 121 FTF enzymes. This model also explains the catalytic mechanism of the enzymes, and differences in their product specificities.

141 citations

Journal ArticleDOI
TL;DR: It was concluded that the choice of an enzyme preparation is more dependent on the characteristics of the substrate rather than on standard enzyme-activities measured, because there was a large difference in the performance of the fourteen enzyme samples.
Abstract: Commercial cellulase preparations are potentially effective for processing biomass feedstocks in order to obtain bioethanol. In plant cell walls, cellulose fibrils occur in close association with xylans (monocotyls) or xyloglucans (dicotyls). The enzymatic conversion of cellulose/xylans is a complex process involving the concerted action of exo/endocellulases and cellobiases yielding glucose and xylanases yielding xylooligomers and xylose. An overview of commonly measured cellulase-, cellobiase-, and xylanase-activity, using respectively filter paper, cellobiose, and AZCL-dyed xylan as a substrate of 14 commercially available enzyme preparations from several suppliers is presented. In addition to these standardized tests, the enzyme-efficiency of degrading native substrates was studied. Grass and wheat bran were fractionated into a water unsoluble fraction (WUS), which was free of oligosaccharides and starch. Additionally, cellulose- and xylan-rich fractions were prepared by alkaline extraction of the WUS and were enzymatically digested. Hereby, the capability of cellulose and xylan conversion of the commercial enzyme preparations tested was measured. The results obtained showed that there was a large difference in the performance of the fourteen enzyme samples. Comparing all results, it was concluded that the choice of an enzyme preparation is more dependent on the characteristics of the substrate rather than on standard enzyme-activities measured.

122 citations


Cited by
More filters
Journal ArticleDOI
05 Oct 2000-Nature
TL;DR: In this article, the authors provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which are identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes.
Abstract: A large fraction of globally produced methane is converted to CO2 by anaerobic oxidation in marine sediments. Strong geochemical evidence for net methane consumption in anoxic sediments is based on methane profiles, radiotracer experiments and stable carbon isotope data. But the elusive microorganisms mediating this reaction have not yet been isolated, and the pathway of anaerobic oxidation of methane is insufficiently understood. Recent data suggest that certain archaea reverse the process of methanogenesis by interaction with sulphate-reducing bacteria. Here we provide microscopic evidence for a structured consortium of archaea and sulphate-reducing bacteria, which we identified by fluorescence in situ hybridization using specific 16S rRNA-targeted oligonucleotide probes. In this example of a structured archaeal-bacterial symbiosis, the archaea grow in dense aggregates of about 100 cells and are surrounded by sulphate-reducing bacteria. These aggregates were abundant in gas-hydrate-rich sediments with extremely high rates of methane-based sulphate reduction, and apparently mediate anaerobic oxidation of methane.

2,679 citations

Journal ArticleDOI
TL;DR: Sulphate-reducing bacteria are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds, and are ubiquitous in anoxic habitats.
Abstract: Sulphate-reducing bacteria (SRB) are anaerobic microorganisms that use sulphate as a terminal electron acceptor in, for example, the degradation of organic compounds. They are ubiquitous in anoxic habitats, where they have an important role in both the sulphur and carbon cycles. SRB can cause a serious problem for industries, such as the offshore oil industry, because of the production of sulphide, which is highly reactive, corrosive and toxic. However, these organisms can also be beneficial by removing sulphate and heavy metals from waste streams. Although SRB have been studied for more than a century, it is only with the recent emergence of new molecular biological and genomic techniques that we have begun to obtain detailed information on their way of life.

1,809 citations

Journal ArticleDOI
TL;DR: This review summarizes what is known and unknown about AOM on earth and its key catalysts, the anaerobic methanotrophic archaea clades and their bacterial partners.
Abstract: Methane is the most abundant hydrocarbon in the atmosphere, and it is an important greenhouse gas, which has so far contributed an estimated 20% of postindustrial global warming. A great deal of biogeochemical research has focused on the causes and effects of the variation in global fluxes of methane throughout earth's history, but the underlying microbial processes and their key agents remain poorly understood. This is a disturbing knowledge gap because 85% of the annual global methane production and about 60% of its consumption are based on microbial processes. Only three key functional groups of microorganisms of limited diversity regulate the fluxes of methane on earth, namely the aerobic methanotrophic bacteria, the methanogenic archaea, and their close relatives, the anaerobic methanotrophic archaea (ANME). The ANME represent special lines of descent within the Euryarchaeota and appear to gain energy exclusively from the anaerobic oxidation of methane (AOM), with sulfate as the final electron accept...

1,373 citations

Journal ArticleDOI
TL;DR: This review focuses on the microbial amylases and their application with a biotechnological perspective and α-Amylase holds the maximum market share of enzyme sales with its major application in the starch industry as well as its well-known usage in bakery.

1,214 citations

Journal ArticleDOI
TL;DR: It is shown that thermodynamic and kinetic constraints largely prevent large-scale methanogenesis in the open ocean water column, and the role of anaerobic oxidation of methane has changed from a controversial curiosity to a major sink in anoxic basins and sediments.
Abstract: This review shows that thermodynamic and kinetic constraints largely prevent large-scale methanogenesis in the open ocean water column. One example of open-ocean methanogenesis involves anoxic digestive tracts and fecal pellet microenvironments; methane released during fecal pellet disaggregation results in the mixed-layer methane maximum. However, the bulk of the methane in the ocean is added by coastal runoff, seeps, hydrothermal vents, decomposing hydrates, and mud volcanoes. Since methane is present in the open ocean at nanomolar concentrations, and since the flux to the atmosphere is small, the ultimate fate of ocean methane additions must be oxidation within the ocean. As indicated in the Introduction and highlighted in Table 3, sources of methane to the ocean water column are poorly quantified. There are only a small number of direct water column methane oxidation rates, so sinks are also poorly quantified. We know that methane oxidation rates are sensitive to ambient methane concentrations, but we have no information on reaction kinetics and only one report of the effect of pressure on methane oxidation. Our perspective on methane sources and the extent of methane oxidation has been changed dramatically by new techniques involving gene probes, determination of isotopically depleted biomarkers, and recent 14C-CH4 measurements showing that methane geochemistry in anoxic basins is dominated by seeps providing fossil methane. The role of anaerobic oxidation of methane has changed from a controversial curiosity to a major sink in anoxic basins and sediments. © 2007 American Chemical Society.

1,194 citations