scispace - formally typeset
Search or ask a question
Author

Marc Ongena

Bio: Marc Ongena is an academic researcher from University of Liège. The author has contributed to research in topics: Bacillus subtilis & Mycosubtilin. The author has an hindex of 10, co-authored 12 publications receiving 4140 citations. Previous affiliations of Marc Ongena include University of Agricultural Sciences, Dharwad & Gembloux Agro-Bio Tech.

Papers
More filters
Journal ArticleDOI
TL;DR: The different structural traits and physico-chemical properties of these effective surface- and membrane-active amphiphilic biomolecules explain their involvement in most of the mechanisms developed by bacteria for the biocontrol of different plant pathogens.

1,747 citations

Journal ArticleDOI
TL;DR: This review gives a detailed overview of the versatile functions of lipopeptides in the biology of Pseudomonas and Bacillus species, and highlights their role in competitive interactions with coexisting organisms, including bacteria, fungi, oomycetes, protozoa, nematodes and plants.
Abstract: Lipopeptides constitute a structurally diverse group of metabolites produced by various bacterial and fungal genera. In the past decades, research on lipopeptides has been fueled by their antimicrobial, antitumour, immunosuppressant and surfactant activities. However, the natural functions of lipopeptides in the lifestyles of the producing microorganisms have received considerably less attention. The substantial structural diversity of lipopeptides suggests that these metabolites have different natural roles, some of which may be unique to the biology of the producing organism. This review gives a detailed overview of the versatile functions of lipopeptides in the biology of Pseudomonas and Bacillus species, and highlights their role in competitive interactions with coexisting organisms, including bacteria, fungi, oomycetes, protozoa, nematodes and plants. Their functions in cell motility, leading to colonization of novel habitats, and in the formation and development of highly structured biofilms are discussed in detail. Finally, this review provides an update on lipopeptide detection and discovery as well as on novel regulatory mechanisms and genes involved in lipopeptide biosynthesis in these two bacterial genera.

909 citations

Journal ArticleDOI
TL;DR: Experiments conducted on bean and tomato plants showed that overexpression of both surfactin and fengycin biosynthetic genes in the naturally poor producer Bacillus subtilis strain 168 was associated with a significant increase in the potential of the derivatives to induce resistance.
Abstract: Summary Multiple strains of Bacillus spp. were demonstrated to stimulate plant defence responses. However, very little is known about the nature of molecular determi- nants secreted by these Gram-positive bacteria that are responsible for the elicitation of the induced systemic resistance (ISR) phenomenon. This study shows that the lipopeptides surfactins and fengycins may be involved in this elicitation process. In bean, pure fengycins and surfactins provided a significant ISR-mediated protective effect on bean plants, similar to the one induced by living cells of the producing strain S499. Moreover, experiments conducted on bean and tomato plants showed that overexpression of both surfactin and fengycin biosynthetic genes in the naturally poor producer Bacillus subtilis strain 168 was associated with a significant increase in the potential of the derivatives to induce resistance. In tomato cells, key enzymes of the lipoxygenase pathway appeared to be activated in resistant plants following induction by lipopeptide overproducers. To our knowledge, such lipopeptides constitute a novel class of compounds from non-pathogenic bacteria that can be perceived by plant cells as signals to initiate defence mechanisms.

688 citations

Journal ArticleDOI
TL;DR: A recombinant strain of Bacillus subtilis derivative was obtained from strain ATCC 6633 by replacement of the native promoter of the mycosubtilin operon by a constitutive promoter originating from the replication gene repU of the Staphylococcus aureus plasmid pUB110.
Abstract: A Bacillus subtilis derivative was obtained from strain ATCC 6633 by replacement of the native promoter of the mycosubtilin operon by a constitutive promoter originating from the replication gene repU of the Staphylococcus aureus plasmid pUB110. The recombinant strain, designated BBG100, produced up to 15-fold more mycosubtilin than the wild type produced. The overproducing phenotype was related to enhancement of the antagonistic activities against several yeasts and pathogenic fungi. Hemolytic activities were also clearly increased in the modified strain. Mass spectrometry analyses of enriched mycosubtilin extracts showed similar patterns of lipopeptides for BBG100 and the wild type. Interestingly, these analyses also revealed a new form of mycosubtilin which was more easily detected in the BBG100 sample. When tested for its biocontrol potential, wild-type strain ATCC 6633 was almost ineffective for reducing a Pythium infection of tomato seedlings. However, treatment of seeds with the BBG100 overproducing strain resulted in a marked increase in the germination rate of seeds. This protective effect afforded by mycosubtilin overproduction was also visualized by the significantly greater fresh weight of emerging seedlings treated with BBG100 compared to controls or seedlings inoculated with the wild-type strain.

352 citations

Journal ArticleDOI
TL;DR: The production of all of these antibiotic compounds highlights B. amyloliquefaciens GA1 as a good candidate for the development of biocontrol agents.
Abstract: Background Phytopathogenic fungi affecting crop and post-harvested vegetables are a major threat to food production and food storage. To face these drawbacks, producers have become increasingly dependent on agrochemicals. However, intensive use of these compounds has led to the emergence of pathogen resistance and severe negative environmental impacts. There are also a number of plant diseases for which chemical solutions are ineffective or non-existent as well as an increasing demand by consumers for pesticide-free food. Thus, biological control through the use of natural antagonistic microorganisms has emerged as a promising alternative to chemical pesticides for more rational and safe crop management.

344 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review restricts itself to bacteria that are derived from and exert this effect on the root and generally designated as PGPR (plant-growth-promoting rhizobacteria), which can be direct or indirect in their effects on plant growth.
Abstract: Several microbes promote plant growth, and many microbial products that stimulate plant growth have been marketed. In this review we restrict ourselves to bacteria that are derived from and exert this effect on the root. Such bacteria are generally designated as PGPR (plant-growth-promoting rhizobacteria). The beneficial effects of these rhizobacteria on plant growth can be direct or indirect. This review begins with describing the conditions under which bacteria live in the rhizosphere. To exert their beneficial effects, bacteria usually must colonize the root surface efficiently. Therefore, bacterial traits required for root colonization are subsequently described. Finally, several mechanisms by which microbes can act beneficially on plant growth are described. Examples of direct plant growth promotion that are discussed include (a) biofertilization, (b) stimulation of root growth, (c) rhizoremediation, and (d) plant stress control. Mechanisms of biological control by which rhizobacteria can promote plant growth indirectly, i.e., by reducing the level of disease, include antibiosis, induction of systemic resistance, and competition for nutrients and niches.

3,761 citations

Journal ArticleDOI
TL;DR: The main functions of rhizosphere microorganisms and how they impact on health and disease are reviewed and several strategies to redirect or reshape the rhizospheric microbiome in favor of microorganisms that are beneficial to plant growth and health are highlighted.
Abstract: Microbial communities play a pivotal role in the functioning of plants by influencing their physiology and development. While many members of the rhizosphere microbiome are beneficial to plant growth, also plant pathogenic microorganisms colonize the rhizosphere striving to break through the protective microbial shield and to overcome the innate plant defense mechanisms in order to cause disease. A third group of microorganisms that can be found in the rhizosphere are the true and opportunistic human pathogenic bacteria, which can be carried on or in plant tissue and may cause disease when introduced into debilitated humans. Although the importance of the rhizosphere microbiome for plant growth has been widely recognized, for the vast majority of rhizosphere microorganisms no knowledge exists. To enhance plant growth and health, it is essential to know which microorganism is present in the rhizosphere microbiome and what they are doing. Here, we review the main functions of rhizosphere microorganisms and how they impact on health and disease. We discuss the mechanisms involved in the multitrophic interactions and chemical dialogues that occur in the rhizosphere. Finally, we highlight several strategies to redirect or reshape the rhizosphere microbiome in favor of microorganisms that are beneficial to plant growth and health.

1,752 citations

Journal ArticleDOI
TL;DR: The different structural traits and physico-chemical properties of these effective surface- and membrane-active amphiphilic biomolecules explain their involvement in most of the mechanisms developed by bacteria for the biocontrol of different plant pathogens.

1,747 citations

Journal ArticleDOI
TL;DR: This review focuses on the population dynamics and activity of soilborne pathogens and beneficial microorganisms, and mechanisms involved in the tripartite interactions between beneficialmicroorganisms, pathogens and the plant.
Abstract: The rhizosphere is a hot spot of microbial interactions as exudates released by plant roots are a main food source for microorganisms and a driving force of their population density and activities. The rhizosphere harbors many organisms that have a neutral effect on the plant, but also attracts organisms that exert deleterious or beneficial effects on the plant. Microorganisms that adversely affect plant growth and health are the pathogenic fungi, oomycetes, bacteria and nematodes. Most of the soilborne pathogens are adapted to grow and survive in the bulk soil, but the rhizosphere is the playground and infection court where the pathogen establishes a parasitic relationship with the plant. The rhizosphere is also a battlefield where the complex rhizosphere community, both microflora and microfauna, interact with pathogens and influence the outcome of pathogen infection. A wide range of microorganisms are beneficial to the plant and include nitrogen-fixing bacteria, endo- and ectomycorrhizal fungi, and plant growth-promoting bacteria and fungi. This review focuses on the population dynamics and activity of soilborne pathogens and beneficial microorganisms. Specific attention is given to mechanisms involved in the tripartite interactions between beneficial microorganisms, pathogens and the plant. We also discuss how agricultural practices affect pathogen and antagonist populations and how these practices can be adopted to promote plant growth and health.

1,370 citations

Journal ArticleDOI
TL;DR: The modulation of ethylene levels in plants by bacterially produced 1-aminocyclopropane-1-carboxylate deaminase is a key trait that enables interference with the physiology of the host plant, and this mechanism leads to the concept of 'competent' endophytes, defined asendophytes that are equipped with genes important for maintenance of plant-endophyte associations.

1,339 citations