scispace - formally typeset
Search or ask a question
Author

Marca M. Doeff

Bio: Marca M. Doeff is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Lithium & Cathode. The author has an hindex of 56, co-authored 183 publications receiving 10311 citations. Previous affiliations of Marca M. Doeff include University of California & University of California, Santa Barbara.
Topics: Lithium, Cathode, Electrolyte, Electrochemistry, Oxide


Papers
More filters
Journal ArticleDOI
TL;DR: It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels, and the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix.
Abstract: The present study sheds light on the long-standing challenges associated with high-voltage operation of LiNi(x)Mn(x)Co(1-2x)O2 cathode materials for lithium-ion batteries. Using correlated ensemble-averaged high-throughput X-ray absorption spectroscopy and spatially resolved electron microscopy and spectroscopy, here we report structural reconstruction (formation of a surface reduced layer, to transition) and chemical evolution (formation of a surface reaction layer) at the surface of LiNi(x)Mn(x)Co(1-2x)O2 particles. These are primarily responsible for the prevailing capacity fading and impedance buildup under high-voltage cycling conditions, as well as the first-cycle coulombic inefficiency. It was found that the surface reconstruction exhibits a strong anisotropic characteristic, which predominantly occurs along lithium diffusion channels. Furthermore, the surface reaction layer is composed of lithium fluoride embedded in a complex organic matrix. This work sets a refined example for the study of surface reconstruction and chemical evolution in battery materials using combined diagnostic tools at complementary length scales.

1,085 citations

Journal ArticleDOI
TL;DR: In this paper, a Raman microprobe spectroscopic analysis indicated that the structure of the residual carbon present on the surfaces of the powders differs significantly and accounts for the performance variation.
Abstract: The electrochemical performance of LiFePO 4 samples synthesized by sol-gel or solid-state routes varies considerably, although their physical characteristics are similar. Raman microprobe spectroscopic analysis indicated that the structure of the residual carbon present on the surfaces of the powders differs significantly and accounts for the performance variation. Higher utilization is associated with a larger ratio of sp 2 -coordinated carbon, which exhibits better electronic properties than disordered or sp 3 -coordinated carbonaceous materials. Incorporation of naphthalenetetracarboxylic dianhydride during synthesis results in a more graphitic carbon coating and improves utilization of LiFePO 4 in lithium cells, although the total carbon content is not necessarily higher than that of samples prepared without the additive. This result suggests that practical energy density need not be sacrificed for power density, provided that carbon coatings are optimized by carefully choosing additives.

458 citations

Journal ArticleDOI
TL;DR: In this paper, the possibility of designing a sodium ion rocking chair cell is discussed, and a first generation example, using a petroleum coke anode, polymer electrolyte, and sodium cobalt bronze cathode is described.
Abstract: Electrochemical insertion of sodium ions into carbon using solid polymer electrolytes or organic liquid electrolytes is described. Cells with the configuration Na/P(EO)sNaCF3SOJCP(EO) = polyethylene oxide) or Na/liquid electrolyte/C were galvanostatically discharged, charged, and cycled. The extent of insertion into C (Le., x in Na§ was found to be a strong function of the type and particle size of the carbon used, and the reversibility of the process was highly dependent upon the type of electrolyte used. The possibility of designing a sodium ion rocking chair cell is discussed, and a first-generation example, using a petroleum coke anode, polymer electrolyte, and sodium cobalt bronze cathode is described. Rocking chair batteries, in which both the anode and cathode are intercalation materials, have recently been commercialized. Because the anodes are commonly inexpensive carbons such as petroleum coke or graphite, reductive intercalation of lithium into these materials is now the subject of intense scrutiny] Similar sodium insertion reactions into carbons have been observed, 2 but have not yet been exploited for use in batteries. We now describe a preliminary study of these insertion reactions and discuss the possibility of developing a sodium ion cell analogous to the wellknown lithium ion systems. Experimental Conoco petroleum coke, Shawinigan black, and JohnsonMatthey microcrystalline graphite were either ground in an attritor mill or used as received after heat-treatment. Polymer electrolytes of composition P(EO)sNaCF3SO3 (PEO = polyethylene oxide) and composite cathodes containing the carbon of interest, PEO, and NaCF3SO3 were made as described previously. 3 Electrodes for use in cells with liquid electrolytes consisted of carbon and ethylene propylene diene monomer (EPDM) binder (2% by weight) and were vacuum dried prior to use. Battery-grade solvents from Mitsubishi Petrochemical Company were stored in an inert atmosphere glove box (02 < 1 ppm) and used as supplied. Sodium was purified as described previously?

438 citations

Journal ArticleDOI
TL;DR: Results obtained from lithium symmetrical cells suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime and surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties.
Abstract: Dense LLZO (Al-substituted Li7La3Zr2O12) pellets were processed in controlled atmospheres to investigate the relationships between the surface chemistry and interfacial behavior in lithium cells. Laser induced breakdown spectroscopy (LIBS), scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy, synchrotron X-ray photoelectron spectroscopy (XPS) and soft X-ray absorption spectroscopy (XAS) studies revealed that Li2CO3 was formed on the surface when LLZO pellets were exposed to air. The distribution and thickness of the Li2CO3 layer were estimated by a combination of bulk and surface sensitive techniques with various probing depths. First-principles thermodynamic calculations confirmed that LLZO has an energetic preference to form Li2CO3 in air. Exposure to air and the subsequent formation of Li2CO3 at the LLZO surface is the source of the high interfacial impedances observed in cells with lithium electrodes. Surface polishing can effectively remove Li2CO3 and dramatically improve the interfacial properties. Polished samples in lithium cells had an area specific resistance (ASR) of only 109 Ω cm(2) for the LLZO/Li interface, the lowest reported value for Al-substituted LLZO. Galvanostatic cycling results obtained from lithium symmetrical cells also suggest that the quality of the LLZO/lithium interface has a significant impact on the device lifetime.

396 citations

Journal ArticleDOI
TL;DR: This article begins with the discussion of various rechargeable batteries and associated important scientific questions in the field, followed by a review of synchrotron X-ray based analytical tools and their successful applications and their fundamental insights into these scientific questions.
Abstract: Rechargeable battery technologies have ignited major breakthroughs in contemporary society, including but not limited to revolutions in transportation, electronics, and grid energy storage The remarkable development of rechargeable batteries is largely attributed to in-depth efforts to improve battery electrode and electrolyte materials There are, however, still intimidating challenges of lower cost, longer cycle and calendar life, higher energy density, and better safety for large scale energy storage and vehicular applications Further progress with rechargeable batteries may require new chemistries (lithium ion batteries and beyond) and better understanding of materials electrochemistry in the various battery technologies In the past decade, advancement of battery materials has been complemented by new analytical techniques that are capable of probing battery chemistries at various length and time scales Synchrotron X-ray techniques stand out as one of the most effective methods that allow for near

363 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: This paper will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior.
Abstract: In the previous paper Ralph Brodd and Martin Winter described the different kinds of batteries and fuel cells. In this paper I will describe lithium batteries in more detail, building an overall foundation for the papers that follow which describe specific components in some depth and usually with an emphasis on the materials behavior. The lithium battery industry is undergoing rapid expansion, now representing the largest segment of the portable battery industry and dominating the computer, cell phone, and camera power source industry. However, the present secondary batteries use expensive components, which are not in sufficient supply to allow the industry to grow at the same rate in the next decade. Moreover, the safety of the system is questionable for the large-scale batteries needed for hybrid electric vehicles (HEV). Another battery need is for a high-power system that can be used for power tools, where only the environmentally hazardous Ni/ Cd battery presently meets the requirements. A battery is a transducer that converts chemical energy into electrical energy and vice versa. It contains an anode, a cathode, and an electrolyte. The anode, in the case of a lithium battery, is the source of lithium ions. The cathode is the sink for the lithium ions and is chosen to optimize a number of parameters, discussed below. The electrolyte provides for the separation of ionic transport and electronic transport, and in a perfect battery the lithium ion transport number will be unity in the electrolyte. The cell potential is determined by the difference between the chemical potential of the lithium in the anode and cathode, ∆G ) -EF. As noted above, the lithium ions flow through the electrolyte whereas the electrons generated from the reaction, Li ) Li+ + e-, go through the external circuit to do work. Thus, the electrode system must allow for the flow of both lithium ions and electrons. That is, it must be both a good ionic conductor and an electronic conductor. As discussed below, many electrochemically active materials are not good electronic conductors, so it is necessary to add an electronically conductive material such as carbon * To whom correspondence should be addressed. Phone and fax: (607) 777-4623. E-mail: stanwhit@binghamton.edu. 4271 Chem. Rev. 2004, 104, 4271−4301

5,475 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the present status of lithium battery technology, then focus on its near future development and finally examine important new directions aimed at achieving quantum jumps in energy and power content.

4,363 citations

Journal ArticleDOI
TL;DR: The current understanding on Li anodes is summarized, the recent key progress in materials design and advanced characterization techniques are highlighted, and the opportunities and possible directions for future development ofLi anodes in applications are discussed.
Abstract: Lithium-ion batteries have had a profound impact on our daily life, but inherent limitations make it difficult for Li-ion chemistries to meet the growing demands for portable electronics, electric vehicles and grid-scale energy storage. Therefore, chemistries beyond Li-ion are currently being investigated and need to be made viable for commercial applications. The use of metallic Li is one of the most favoured choices for next-generation Li batteries, especially Li-S and Li-air systems. After falling into oblivion for several decades because of safety concerns, metallic Li is now ready for a revival, thanks to the development of investigative tools and nanotechnology-based solutions. In this Review, we first summarize the current understanding on Li anodes, then highlight the recent key progress in materials design and advanced characterization techniques, and finally discuss the opportunities and possible directions for future development of Li anodes in applications.

4,302 citations