scispace - formally typeset
Search or ask a question
Author

Marcel Dettling

Bio: Marcel Dettling is an academic researcher from Zürcher Fachhochschule. The author has contributed to research in topics: Boosting (machine learning) & Customer lifetime value. The author has an hindex of 11, co-authored 27 publications receiving 12776 citations. Previous affiliations of Marcel Dettling include ETH Zurich & Winterthur Museum, Garden and Library.

Papers
More filters
Journal ArticleDOI
TL;DR: Details of the aims and methods of Bioconductor, the collaborative creation of extensible software for computational biology and bioinformatics, and current challenges are described.
Abstract: The Bioconductor project is an initiative for the collaborative creation of extensible software for computational biology and bioinformatics. The goals of the project include: fostering collaborative development and widespread use of innovative software, reducing barriers to entry into interdisciplinary scientific research, and promoting the achievement of remote reproducibility of research results. We describe details of our aims and methods, identify current challenges, compare Bioconductor to other open bioinformatics projects, and provide working examples.

12,142 citations

Journal ArticleDOI
Marcel Dettling1
TL;DR: When bagging is used as a module in boosting, the resulting classifier consistently improves the predictive performance and the probability estimates of both bagging and boosting on real and simulated gene expression data.
Abstract: Motivation: Microarray experiments are expected to contribute significantly to the progress in cancer treatment by enabling a precise and early diagnosis. They create a need for class prediction tools, which can deal with a large number of highly correlated input variables, perform feature selection and provide class probability estimates that serve as a quantification of the predictive uncertainty. A very promising solution is to combine the two ensemble schemes bagging and boosting to a novel algorithm called BagBoosting. Results: When bagging is used as a module in boosting, the resulting classifier consistently improves the predictive performance and the probability estimates of both bagging and boosting on real and simulated gene expression data. This quasi-guaranteed improvement can be obtained by simply making a bigger computing effort. The advantageous predictive potential is also confirmed by comparing BagBoosting to several established class prediction tools for microarray data. Availability: Software for the modified boosting algorithms, for benchmark studies and for the simulation of microarray data are available as an R package under GNU public license at http://stat.ethz.ch/~dettling/bagboost.html

577 citations

Journal ArticleDOI
TL;DR: The alveolar rhabdomyosarcoma signature was used to classify an additional alveolars case lacking any known PAX3 or PAX7 fusion as belonging to the translocation-positive group, leading to the identification of a novel translocation t(2;2)(q35;p23), which generates a fusion protein composed of PAX3 and the nuclear receptor coactivator NCOA1, having similar transactivation properties as PAX3/FKHR.
Abstract: Rhabdomyosarcoma is a pediatric tumor type, which is classified based on histological criteria into two major subgroups, namely embryonal rhabdomyosarcoma and alveolar rhabdomyosarcoma. The majority, but not all, alveolar rhabdomyosarcoma carry the specific PAX3(7)/FKHR-translocation, whereas there is no consistent genetic abnormality recognized in embryonal rhabdomyosarcoma. To gain additional insight into the genetic characteristics of these subtypes, we used oligonucleotide microarrays to measure the expression profiles of a group of 29 rhabdomyosarcoma biopsy samples (15 embryonal rhabdomyosarcoma, and 10 translocation-positive and 4 translocation-negative alveolar rhabdomyosarcoma). Hierarchical clustering revealed expression signatures clearly discriminating all three of the subgroups. Differentially expressed genes included several tyrosine kinases and G protein-coupled receptors, which might be amenable to pharmacological intervention. In addition, the alveolar rhabdomyosarcoma signature was used to classify an additional alveolar rhabdomyosarcoma case lacking any known PAX3 or PAX7 fusion as belonging to the translocation-positive group, leading to the identification of a novel translocation t(2;2)(q35;p23), which generates a fusion protein composed of PAX3 and the nuclear receptor coactivator NCOA1, having similar transactivation properties as PAX3/FKHR. These experiments demonstrate for the first time that gene expression profiling is capable of identifying novel chromosomal translocations.

216 citations

Journal ArticleDOI
TL;DR: A new method for finding groups of genes by directly incorporating the response variables into the grouping process, yielding a supervised clustering algorithm for genes that identifies gene clusters with excellent predictive potential.
Abstract: Background: We focus on microarray data where experiments monitor gene expression in different tissues and where each experiment is equipped with an additional response variable such as a cancer type. Although the number of measured genes is in the thousands, it is assumed that only a few marker components of gene subsets determine the type of a tissue. Here we present a new method for finding such groups of genes by directly incorporating the response variables into the grouping process, yielding a supervised clustering algorithm for genes. Results: An empirical study on eight publicly available microarray datasets shows that our algorithm identifies gene clusters with excellent predictive potential, often superior to classification with state-of-the-art methods based on single genes. Permutation tests and bootstrapping provide evidence that the output is reasonably stable and more than a noise artifact. Conclusions: In contrast to other methods such as hierarchical clustering, our algorithm identifies several gene clusters whose expression levels clearly distinguish the different tissue types. The identification of such gene clusters is potentially useful for medical diagnostics and may at the same time reveal insights into functional genomics.

174 citations

Journal ArticleDOI
TL;DR: Pelora is presented, an algorithm based on penalized logistic regression analysis, that combines gene selection, gene grouping and sample classification in a supervised, simultaneous way and identifies gene groups whose expression centroids have very good predictive potential and yield results that can keep up with state-of-the-art classification methods based on single genes.

135 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-seq, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression. The DESeq2 package is available at http://www.bioconductor.org/packages/release/bioc/html/DESeq2.html .

47,038 citations

Journal ArticleDOI
TL;DR: EdgeR as mentioned in this paper is a Bioconductor software package for examining differential expression of replicated count data, which uses an overdispersed Poisson model to account for both biological and technical variability and empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference.
Abstract: Summary: It is expected that emerging digital gene expression (DGE) technologies will overtake microarray technologies in the near future for many functional genomics applications. One of the fundamental data analysis tasks, especially for gene expression studies, involves determining whether there is evidence that counts for a transcript or exon are significantly different across experimental conditions. edgeR is a Bioconductor software package for examining differential expression of replicated count data. An overdispersed Poisson model is used to account for both biological and technical variability. Empirical Bayes methods are used to moderate the degree of overdispersion across transcripts, improving the reliability of inference. The methodology can be used even with the most minimal levels of replication, provided at least one phenotype or experimental condition is replicated. The software may have other applications beyond sequencing data, such as proteome peptide count data. Availability: The package is freely available under the LGPL licence from the Bioconductor web site (http://bioconductor.org).

29,413 citations

Journal ArticleDOI
TL;DR: The philosophy and design of the limma package is reviewed, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.
Abstract: limma is an R/Bioconductor software package that provides an integrated solution for analysing data from gene expression experiments. It contains rich features for handling complex experimental designs and for information borrowing to overcome the problem of small sample sizes. Over the past decade, limma has been a popular choice for gene discovery through differential expression analyses of microarray and high-throughput PCR data. The package contains particularly strong facilities for reading, normalizing and exploring such data. Recently, the capabilities of limma have been significantly expanded in two important directions. First, the package can now perform both differential expression and differential splicing analyses of RNA sequencing (RNA-seq) data. All the downstream analysis tools previously restricted to microarray data are now available for RNA-seq as well. These capabilities allow users to analyse both RNA-seq and microarray data with very similar pipelines. Second, the package is now able to go past the traditional gene-wise expression analyses in a variety of ways, analysing expression profiles in terms of co-regulated sets of genes or in terms of higher-order expression signatures. This provides enhanced possibilities for biological interpretation of gene expression differences. This article reviews the philosophy and design of the limma package, summarizing both new and historical features, with an emphasis on recent enhancements and features that have not been previously described.

22,147 citations

Posted ContentDOI
17 Nov 2014-bioRxiv
TL;DR: This work presents DESeq2, a method for differential analysis of count data, using shrinkage estimation for dispersions and fold changes to improve stability and interpretability of estimates, which enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression.
Abstract: In comparative high-throughput sequencing assays, a fundamental task is the analysis of count data, such as read counts per gene in RNA-Seq data, for evidence of systematic changes across experimental conditions. Small replicate numbers, discreteness, large dynamic range and the presence of outliers require a suitable statistical approach. We present DESeq2, a method for differential analysis of count data. DESeq2 uses shrinkage estimation for dispersions and fold changes to improve stability and interpretability of the estimates. This enables a more quantitative analysis focused on the strength rather than the mere presence of differential expression and facilitates downstream tasks such as gene ranking and visualization. DESeq2 is available as an R/Bioconductor package.

17,014 citations

Journal ArticleDOI
TL;DR: An R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters and can be easily extended to other species and ontologies is presented.
Abstract: Increasing quantitative data generated from transcriptomics and proteomics require integrative strategies for analysis Here, we present an R package, clusterProfiler that automates the process of biological-term classification and the enrichment analysis of gene clusters The analysis module and visualization module were combined into a reusable workflow Currently, clusterProfiler supports three species, including humans, mice, and yeast Methods provided in this package can be easily extended to other species and ontologies The clusterProfiler package is released under Artistic-20 License within Bioconductor project The source code and vignette are freely available at http://bioconductororg/packages/release/bioc/html/clusterProfilerhtml

16,644 citations