scispace - formally typeset
Search or ask a question
Author

Marcel G. A. van der Heijden

Bio: Marcel G. A. van der Heijden is an academic researcher from University of Zurich. The author has contributed to research in topics: Ecosystem & Organic farming. The author has an hindex of 60, co-authored 162 publications receiving 20996 citations. Previous affiliations of Marcel G. A. van der Heijden include University of Basel & Utrecht University.


Papers
More filters
Journal ArticleDOI
TL;DR: Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.
Abstract: Microbes are the unseen majority in soil and comprise a large portion of lifes genetic diversity. Despite their abundance, the impact of soil microbes on ecosystem processes is still poorly understood. Here we explore the various roles that soil microbes play in terrestrial ecosystems with special emphasis on their contribution to plant productivity and diversity. Soil microbes are important regulators of plant productivity, especially in nutrient poor ecosystems where plant symbionts are responsible for the acquisition of limiting nutrients. Mycorrhizal fungi and nitrogenfixing bacteria are responsible for c. 5‐20% (grassland and savannah) to 80% (temperate and boreal forests) of all nitrogen, and up to 75% of phosphorus, that is acquired by plants annually. Free-living microbes also strongly regulate plant productivity, through the mineralization of, and competition for, nutrients that sustain plant productivity. Soil microbes, including microbial pathogens, are also important regulators of plant community dynamics and plant diversity, determining plant abundance and, in some cases, facilitating invasion by exotic plants. Conservative estimates suggest that c. 20 000 plant species are completely dependent on microbial symbionts for growth and survival pointing to the importance of soil microbes as regulators of plant species richness on Earth. Overall, this review shows that soil microbes must be considered as important drivers of plant diversity and productivity in terrestrial ecosystems.

3,673 citations

Journal ArticleDOI
05 Nov 1998-Nature
TL;DR: It is shown that below-ground diversity of arbuscular mycorrhizal fungi (AMF) is a major factor contributing to the maintenance of plant biodiversity and to ecosystem functioning, and that microbial interactions can drive ecosystem functions such as plant biodiversity, productivity and variability.
Abstract: The functioning and stability of terrestrial ecosystems are determined by plant biodiversity and species composition1,2,3,4,5 However, the ecological mechanisms by which plant biodiversity and species composition are regulated and maintained are not well understood These mechanisms need to be identified to ensure successful management for conservation and restoration of diverse natural ecosystems Here we show, by using two independent, but complementary, ecological experiments, that below-ground diversity of arbuscular mycorrhizal fungi (AMF) is a major factor contributing to the maintenance of plant biodiversity and to ecosystem functioning At low AMF diversity, the plant species composition and overall structure of microcosms that simulate European calcareous grassland fluctuate greatly when the AMF taxa that are present are changed Plant biodiversity, nutrient capture and productivity in macrocosms that simulate North American old-fields increase significantly with increasing AMF-species richness These results emphasize the need to protect AMF and to consider these fungi in future management practices in order to maintain diverse ecosystems Our results also show that microbial interactions can drive ecosystem functions such as plant biodiversity, productivity and variability

3,210 citations

Journal ArticleDOI
TL;DR: It is found that reductions in the abundance and presence of soil organisms results in the decline of multiple ecosystem functions, including plant diversity and nutrient cycling and retention, suggesting that below-ground biodiversity is a key resource for maintaining the functioning of ecosystems.
Abstract: Biodiversity loss has become a global concern as evidence accumulates that it will negatively affect ecosystem services on which society depends. So far, most studies have focused on the ecological consequences of above-ground biodiversity loss; yet a large part of Earth’s biodiversity is literally hidden below ground. Whether reductions of biodiversity in soil communities below ground have consequences for the overall performance of an ecosystem remains unresolved. It is important to investigate this in view of recent observations that soil biodiversity is declining and that soil communities are changing upon land use intensification. We established soil communities differing in composition and diversity and tested their impact on eight ecosystem functions in model grassland communities. We show that soil biodiversity loss and simplification of soil community composition impair multiple ecosystem functions, including plant diversity, decomposition, nutrient retention, and nutrient cycling. The average response of all measured ecosystem functions (ecosystem multifunctionality) exhibited a strong positive linear relationship to indicators of soil biodiversity, suggesting that soil community composition is a key factor in regulating ecosystem functioning. Our results indicate that changes in soil communities and the loss of soil biodiversity threaten ecosystem multifunctionality and sustainability.

1,410 citations

Journal ArticleDOI
TL;DR: Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities, and network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks.
Abstract: Almost all land plants form symbiotic associations with mycorrhizal fungi. These below-ground fungi play a key role in terrestrial ecosystems as they regulate nutrient and carbon cycles, and influence soil structure and ecosystem multifunctionality. Up to 80% of plant N and P is provided by mycorrhizal fungi and many plant species depend on these symbionts for growth and survival. Estimates suggest that there are c. 50 000 fungal species that form mycorrhizal associations with c. 250 000 plant species. The development of high-throughput molecular tools has helped us to better understand the biology, evolution, and biodiversity of mycorrhizal associations. Nuclear genome assemblies and gene annotations of 33 mycorrhizal fungal species are now available providing fascinating opportunities to deepen our understanding of the mycorrhizal lifestyle, the metabolic capabilities of these plant symbionts, the molecular dialogue between symbionts, and evolutionary adaptations across a range of mycorrhizal associations. Large-scale molecular surveys have provided novel insights into the diversity, spatial and temporal dynamics of mycorrhizal fungal communities. At the ecological level, network theory makes it possible to analyze interactions between plant-fungal partners as complex underground multi-species networks. Our analysis suggests that nestedness, modularity and specificity of mycorrhizal networks vary and depend on mycorrhizal type. Mechanistic models explaining partner choice, resource exchange, and coevolution in mycorrhizal associations have been developed and are being tested. This review ends with major frontiers for further research.

1,223 citations

Journal ArticleDOI
TL;DR: A definition of keystone taxa in microbial ecology is proposed and over 200 microbial keystoneTaxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome are summarized.
Abstract: Microorganisms have a pivotal role in the functioning of ecosystems. Recent studies have shown that microbial communities harbour keystone taxa, which drive community composition and function irrespective of their abundance. In this Opinion article, we propose a definition of keystone taxa in microbial ecology and summarize over 200 microbial keystone taxa that have been identified in soil, plant and marine ecosystems, as well as in the human microbiome. We explore the importance of keystone taxa and keystone guilds for microbiome structure and functioning and discuss the factors that determine their distribution and activities.

1,188 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
26 Oct 2001-Science
TL;DR: Larger numbers of species are probably needed to reduce temporal variability in ecosystem processes in changing environments and to determine how biodiversity dynamics, ecosystem processes, and abiotic factors interact.
Abstract: The ecological consequences of biodiversity loss have aroused considerable interest and controversy during the past decade. Major advances have been made in describing the relationship between species diversity and ecosystem processes, in identifying functionally important species, and in revealing underlying mechanisms. There is, however, uncertainty as to how results obtained in recent experiments scale up to landscape and regional levels and generalize across ecosystem types and processes. Larger numbers of species are probably needed to reduce temporal variability in ecosystem processes in changing environments. A major future challenge is to determine how biodiversity dynamics, ecosystem processes, and abiotic factors interact.

4,070 citations

Journal ArticleDOI
11 May 2000-Nature
TL;DR: The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.
Abstract: Human alteration of the global environment has triggered the sixth major extinction event in the history of life and caused widespread changes in the global distribution of organisms. These changes in biodiversity alter ecosystem processes and change the resilience of ecosystems to environmental change. This has profound consequences for services that humans derive from ecosystems. The large ecological and societal consequences of changing biodiversity should be minimized to preserve options for future solutions to global environmental problems.

3,977 citations

Journal ArticleDOI
11 Jun 2004-Science
TL;DR: This work shows how aboveground and belowground components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed.
Abstract: All terrestrial ecosystems consist of aboveground and belowground components that interact to influence community- and ecosystem-level processes and properties. Here we show how these components are closely interlinked at the community level, reinforced by a greater degree of specificity between plants and soil organisms than has been previously supposed. As such, aboveground and belowground communities can be powerful mutual drivers, with both positive and negative feedbacks. A combined aboveground-belowground approach to community and ecosystem ecology is enhancing our understanding of the regulation and functional significance of biodiversity and of the environmental impacts of human-induced global change phenomena.

3,683 citations