scispace - formally typeset
Search or ask a question
Author

Marcel Holyoak

Bio: Marcel Holyoak is an academic researcher from University of California, Davis. The author has contributed to research in topics: Population & Habitat. The author has an hindex of 34, co-authored 118 publications receiving 11116 citations. Previous affiliations of Marcel Holyoak include University of Kentucky & University of California.


Papers
More filters
Journal ArticleDOI
TL;DR: This framework is used to discuss why the metacommunity concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples.
Abstract: The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch-dynamic view, the species-sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio-temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.

4,266 citations

Journal ArticleDOI
TL;DR: A conceptual framework depicting the interplay among four basic mechanistic components of organismal movement is introduced, providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes.
Abstract: Movement of individual organisms is fundamental to life, quilting our planet in a rich tapestry of phenomena with diverse implications for ecosystems and humans. Movement research is both plentiful and insightful, and recent methodological advances facilitate obtaining a detailed view of individual movement. Yet, we lack a general unifying paradigm, derived from first principles, which can place movement studies within a common context and advance the development of a mature scientific discipline. This introductory article to the Movement Ecology Special Feature proposes a paradigm that integrates conceptual, theoretical, methodological, and empirical frameworks for studying movement of all organisms, from microbes to trees to elephants. We introduce a conceptual framework depicting the interplay among four basic mechanistic components of organismal movement: the internal state (why move?), motion (how to move?), and navigation (when and where to move?) capacities of the individual and the external factors affecting movement. We demonstrate how the proposed framework aids the study of various taxa and movement types; promotes the formulation of hypotheses about movement; and complements existing biomechanical, cognitive, random, and optimality paradigms of movement. The proposed framework integrates eclectic research on movement into a structured paradigm and aims at providing a basis for hypothesis generation and a vehicle facilitating the understanding of the causes, mechanisms, and spatiotemporal patterns of movement and their role in various ecological and evolutionary processes. "Now we must consider in general the common reason for moving with any movement whatever." (Aristotle, De Motu Animalium, 4th century B.C.).

2,133 citations

Book
01 Jan 2005
TL;DR: In examining communities open to dispersal, the book unites a broad range of ecological theories, presenting some of the first empirical investigations and revealing the value of the metacommunity approach.
Abstract: Until recently community ecology - a science devoted to understanding the patterns and processes of species distribution and abundance - focused mainly on specific and often limited scales of a single community. Since the 1970s, for example, metapopulation dynamics - studies of interacting groups of populations connected through movement - concentrated on the processes of population turnover, extinction, and establishment of new populations. "Metacommunities" takes the hallmarks of metapopulation theory to the next level by considering a group of communities, each of which may contain numerous populations, connected by species interactions within communities and the movement of individuals between communities. In examining communities open to dispersal, the book unites a broad range of ecological theories, presenting some of the first empirical investigations and revealing the value of the metacommunity approach. The collection of empirical, theoretical, and synthetic chapters in "Metacommunities" seeks to understand how communities work in fragmented landscapes. Encouraging community ecologists to rethink some of the leading theories of population and community dynamics, "Metacommunities" urges ecologists to expand the spatiotemporal scales of their research.

775 citations

Journal ArticleDOI
TL;DR: An environmental heterogeneity hypothesis of invasions is proposed, whereby heterogeneity both increases invasion success and reduces the impact to native species in the community, because it promotes invasion and coexistence mechanisms that are not possible in homogeneous environments.
Abstract: We review and synthesize recent developments in the study of the invasion of communities in heterogeneous environments, considering both the invasibility of the community and impacts to the community. We consider both empirical and theoretical studies. For each of three major kinds of environmental heterogeneity (temporal, spatial and invader-driven), we find evidence that heterogeneity is critical to the invasibility of the community, the rate of spread, and the impacts on the community following invasion. We propose an environmental heterogeneity hypothesis of invasions, whereby heterogeneity both increases invasion success and reduces the impact to native species in the community, because it promotes invasion and coexistence mechanisms that are not possible in homogeneous environments. This hypothesis could help to explain recent findings that diversity is often increased as a result of biological invasions. It could also explain the scale dependence of the diversity-invasibility relationship. Despite the undoubted importance of heterogeneity to the invasion of communities, it has been studied remarkably little and new research is needed that simultaneously considers invasion, environmental heterogeneity and community characteristics. As a young field, there is an unrivalled opportunity for theoreticians and experimenters to work together to build a tractable theory informed by data.

419 citations

Journal ArticleDOI
01 May 2003-Ecology
TL;DR: In this article, the authors review and synthesize the theoretical literature on TMIs and, in particular, on trait-mediated indirect interactions, in which the presence of one species mediates the interaction between a second and third species.
Abstract: Trait-mediated interactions (TMIs), in which trophic and competitive inter- actions depend on individual traits as well as on overall population densities, have inspired large amounts of research, but theoretical and empirical studies have not been well con- nected. To help mitigate this problem, we review and synthesize the theoretical literature on TMIs and, in particular, on trait-mediated indirect interactions, TMIIs, in which the presence of one species mediates the interaction between a second and third species. (1) In models, TMIs tend to stabilize simple communities; adding further biological detail often reduces stability in models, but populations may persist even if their dynamics become mathematically unstable. (2) Short- and long-term changes in population density caused by TMIs depend even more on details, such as the curvature of functional responses and trade-offs, which have rarely been measured. (3) The effects of TMIs in multipredator communities depend in a straightforward way on the specificity of prey defenses. (4) Tritrophic and more complex communities are theoretically difficult; few general conclu- sions have emerged. Theory needs new kinds of experiments as a guide. The most critical needs are experiments that measure curvatures of trade-offs and responses, and experiments that (combined with theory) allow us to scale from short- to long-term responses of com- munities. Anecdotal evidence from long-term and large-scale studies suggests that TMIs may affect community dynamics at practical management scales; community models in- corporating TMIs are necessary and require closer collaborations between theory and ex-

345 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols used xiii 1.
Abstract: Preface to the Princeton Landmarks in Biology Edition vii Preface xi Symbols Used xiii 1. The Importance of Islands 3 2. Area and Number of Speicies 8 3. Further Explanations of the Area-Diversity Pattern 19 4. The Strategy of Colonization 68 5. Invasibility and the Variable Niche 94 6. Stepping Stones and Biotic Exchange 123 7. Evolutionary Changes Following Colonization 145 8. Prospect 181 Glossary 185 References 193 Index 201

14,171 citations

01 Jan 2016
TL;DR: The modern applied statistics with s is universally compatible with any devices to read, and is available in the digital library an online access to it is set as public so you can download it instantly.
Abstract: Thank you very much for downloading modern applied statistics with s. As you may know, people have search hundreds times for their favorite readings like this modern applied statistics with s, but end up in harmful downloads. Rather than reading a good book with a cup of coffee in the afternoon, instead they cope with some harmful virus inside their laptop. modern applied statistics with s is available in our digital library an online access to it is set as public so you can download it instantly. Our digital library saves in multiple countries, allowing you to get the most less latency time to download any of our books like this one. Kindly say, the modern applied statistics with s is universally compatible with any devices to read.

5,249 citations

Journal ArticleDOI
22 Sep 2000-Science
TL;DR: Results of observational studies suggest that in many areas that have been analyzed, changes in total precipitation are amplified at the tails, and changes in some temperature extremes have been observed.
Abstract: One of the major concerns with a potential change in climate is that an increase in extreme events will occur. Results of observational studies suggest that in many areas that have been analyzed, changes in total precipitation are amplified at the tails, and changes in some temperature extremes have been observed. Model output has been analyzed that shows changes in extreme events for future climates, such as increases in extreme high temperatures, decreases in extreme low temperatures, and increases in intense precipitation events. In addition, the societal infrastructure is becoming more sensitive to weather and climate extremes, which would be exacerbated by climate change. In wild plants and animals, climate-induced extinctions, distributional and phenological changes, and species' range shifts are being documented at an increasing rate. Several apparently gradual biological changes are linked to responses to extreme weather and climate events.

4,379 citations

Journal ArticleDOI
TL;DR: This framework is used to discuss why the metacommunity concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples.
Abstract: The metacommunity concept is an important way to think about linkages between different spatial scales in ecology. Here we review current understanding about this concept. We first investigate issues related to its definition as a set of local communities that are linked by dispersal of multiple potentially interacting species. We then identify four paradigms for metacommunities: the patch-dynamic view, the species-sorting view, the mass effects view and the neutral view, that each emphasizes different processes of potential importance in metacommunities. These have somewhat distinct intellectual histories and we discuss elements related to their potential future synthesis. We then use this framework to discuss why the concept is useful in modifying existing ecological thinking and illustrate this with a number of both theoretical and empirical examples. As ecologists strive to understand increasingly complex mechanisms and strive to work across multiple scales of spatio-temporal organization, concepts like the metacommunity can provide important insights that frequently contrast with those that would be obtained with more conventional approaches based on local communities alone.

4,266 citations

Journal ArticleDOI
TL;DR: It is asserted that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context a biotic interaction milieu.
Abstract: There is considerable debate about whether community ecology will ever produce general principles. We suggest here that this can be achieved but that community ecology has lost its way by focusing on pairwise species interactions independent of the environment. We assert that community ecology should return to an emphasis on four themes that are tied together by a two-step process: how the fundamental niche is governed by functional traits within the context of abiotic environmental gradients; and how the interaction between traits and fundamental niches maps onto the realized niche in the context of a biotic interaction milieu. We suggest this approach can create a more quantitative and predictive science that can more readily address issues of global change.

3,715 citations