scispace - formally typeset
Search or ask a question
Author

Marcel van Herk

Bio: Marcel van Herk is an academic researcher from University of Manchester. The author has contributed to research in topics: Medicine & Radiation therapy. The author has an hindex of 65, co-authored 297 publications receiving 19561 citations. Previous affiliations of Marcel van Herk include Manchester Academic Health Science Centre & Netherlands Cancer Institute.


Papers
More filters
Journal ArticleDOI
TL;DR: The magnitude of respiratory motion is described, radiotherapy specific problems caused by respiratory motion are discussed, techniques that explicitly manage respiratory motion during radiotherapy are explained, and recommendations in the application of these techniques for patient care are given.
Abstract: This document is the report of a task group of the AAPM and has been prepared primarily to advise medical physicists involved in the external-beam radiation therapy of patients with thoracic, abdominal, and pelvic tumors affected by respiratory motion. This report describes the magnitude of respiratory motion, discusses radiotherapy specific problems caused by respiratory motion, explains techniques that explicitly manage respiratory motion during radiotherapy and gives recommendations in the application of these techniques for patient care, including quality assurance (QA) guidelines for these devices and their use with conformal and intensity modulated radiotherapy. The technologies covered by this report are motion-encompassing methods, respiratory gated techniques, breath-hold techniques, forced shallow-breathing methods, and respiration-synchronized techniques. The main outcome of this report is a clinical process guide for managing respiratory motion. Included in this guide is the recommendation that tumor motion should be measured (when possible) for each patient for whom respiratory motion is a concern. If target motion is greater than 5 mm, a method of respiratory motion management is available, and if the patient can tolerate the procedure, respiratory motion management technology is appropriate. Respiratory motion management is also appropriate when the procedure will increase normal tissue sparing. Respiratory motion management involves further resources, education and the development of and adherence to QA procedures.

1,891 citations

Journal ArticleDOI
TL;DR: Tumor motion and hysteresis could be modeled with an asymmetric function with varying asymmetry and can lower treatment efficiency in real-time tumor tracking-gated treatments or lead to a geographic miss in conventional or active breathing controlled treatments.
Abstract: Purpose: In this work, three-dimensional (3D) motion of lung tumors during radiotherapy in real time was investigated. Understanding the behavior of tumor motion in lung tissue to model tumor movement is necessary for accurate (gated or breath-hold) radiotherapy or CT scanning. Methods: Twenty patients were included in this study. Before treatment, a 2-mm gold marker was implanted in or near the tumor. A real-time tumor tracking system using two fluoroscopy image processor units was installed in the treatment room. The 3D position of the implanted gold marker was determined by using real-time pattern recognition and a calibrated projection geometry. The linear accelerator was triggered to irradiate the tumor only when the gold marker was located within a certain volume. The system provided the coordinates of the gold marker during beam-on and beam-off time in all directions simultaneously, at a sample rate of 30 images per second. The recorded tumor motion was analyzed in terms of the amplitude and curvature of the tumor motion in three directions, the differences in breathing level during treatment, hysteresis (the difference between the inhalation and exhalation trajectory of the tumor), and the amplitude of tumor motion induced by cardiac motion. Results: The average amplitude of the tumor motion was greatest (12 ± 2 mm [SD]) in the cranial-caudal direction for tumors situated in the lower lobes and not attached to rigid structures such as the chest wall or vertebrae. For the lateral and anterior-posterior directions, tumor motion was small both for upper- and lower-lobe tumors (2 ± 1 mm). The time-averaged tumor position was closer to the exhale position, because the tumor spent more time in the exhalation than in the inhalation phase. The tumor motion was modeled as a sinusoidal movement with varying asymmetry. The tumor position in the exhale phase was more stable than the tumor position in the inhale phase during individual treatment fields. However, in many patients, shifts in the exhale tumor position were observed intra- and interfractionally. These shifts are the result of patient relaxation, gravity (posterior direction), setup errors, and/or patient movement. The 3D trajectory of the tumor showed hysteresis for 10 of the 21 tumors, which ranged from 1 to 5 mm. The extent of hysteresis and the amplitude of the tumor motion remained fairly constant during the entire treatment. Changes in shape of the trajectory of the tumor were observed between subsequent treatment days for only one patient. Fourier analysis revealed that for 7 of the 21 tumors, a measurable motion in the range 1–4 mm was caused by the cardiac beat. These tumors were located near the heart or attached to the aortic arch. The motion due to the heartbeat was greatest in the lateral direction. Tumor motion due to hysteresis and heartbeat can lower treatment efficiency in real-time tumor tracking-gated treatments or lead to a geographic miss in conventional or active breathing controlled treatments. Conclusion: The real-time tumor tracking system measured the tumor position in all three directions simultaneously, at a sampling rate that enabled detection of tumor motion due to heartbeat as well as hysteresis. Tumor motion and hysteresis could be modeled with an asymmetric function with varying asymmetry. Tumor motion due to breathing was greatest in the cranial-caudal direction for lower-lobe unfixed tumors.

1,356 citations

Journal ArticleDOI
TL;DR: An overview is given of errors in radiotherapy and margin recipes, based on physical and biological considerations, and the most important errors are setup error and organ motion leading to day-to-day variations.

1,173 citations

Journal ArticleDOI
TL;DR: Experts assembled to review, debate and summarize the challenges of IB validation and qualification produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical validation, biological/clinical validation and assessment of cost-effectiveness.
Abstract: Imaging biomarkers (IBs) are integral to the routine management of patients with cancer. IBs used daily in oncology include clinical TNM stage, objective response and left ventricular ejection fraction. Other CT, MRI, PET and ultrasonography biomarkers are used extensively in cancer research and drug development. New IBs need to be established either as useful tools for testing research hypotheses in clinical trials and research studies, or as clinical decision-making tools for use in healthcare, by crossing 'translational gaps' through validation and qualification. Important differences exist between IBs and biospecimen-derived biomarkers and, therefore, the development of IBs requires a tailored 'roadmap'. Recognizing this need, Cancer Research UK (CRUK) and the European Organisation for Research and Treatment of Cancer (EORTC) assembled experts to review, debate and summarize the challenges of IB validation and qualification. This consensus group has produced 14 key recommendations for accelerating the clinical translation of IBs, which highlight the role of parallel (rather than sequential) tracks of technical (assay) validation, biological/clinical validation and assessment of cost-effectiveness; the need for IB standardization and accreditation systems; the need to continually revisit IB precision; an alternative framework for biological/clinical validation of IBs; and the essential requirements for multicentre studies to qualify IBs for clinical use.

758 citations

Journal ArticleDOI
TL;DR: The real-time tumor-tracking and gating system significantly improves the accuracy of irradiation of targets in motion at the expense of an acceptable amount of diagnostic X-ray exposure.
Abstract: Purpose: To reduce uncertainty due to setup error and organ motion during radiotherapy of tumors in or near the lung, by means of real-time tumor tracking and gating of a linear accelerator Methods and Materials: The real-time tumor-tracking system consists of four sets of diagnostic X-ray television systems (two of which offer an unobstructed view of the patient at any time), an image processor unit, a gating control unit, and an image display unit The system recognizes the position of a 20-mm gold marker in the human body 30 times per second using two X-ray television systems The marker is inserted in or near the tumor using image guided implantation The linear accelerator is gated to irradiate the tumor only when the marker is within a given tolerance from its planned coordinates relative to the isocenter The accuracy of the system and the additional dose due to the diagnostic X-ray were examined in a phantom, and the geometric performance of the system was evaluated in 4 patients Results: The phantom experiment demonstrated that the geometric accuracy of the tumor-tracking system is better than 15 mm for moving targets up to a speed of 40 mm/s The dose due to the diagnostic X-ray monitoring ranged from 001% to 1% of the target dose for a 20-Gy irradiation of a chest phantom In 4 patients with lung cancer, the range of the coordinates of the tumor marker during irradiation was 25–53 mm, which would have been 96–384 mm without tracking Conclusion: We successfully implemented and applied a tumor-tracking and gating system The system significantly improves the accuracy of irradiation of targets in motion at the expense of an acceptable amount of diagnostic X-ray exposure

650 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A simple but effective image prior - dark channel prior to remove haze from a single input image is proposed, based on a key observation - most local patches in haze-free outdoor images contain some pixels which have very low intensities in at least one color channel.
Abstract: In this paper, we propose a simple but effective image prior-dark channel prior to remove haze from a single input image. The dark channel prior is a kind of statistics of outdoor haze-free images. It is based on a key observation-most local patches in outdoor haze-free images contain some pixels whose intensity is very low in at least one color channel. Using this prior with the haze imaging model, we can directly estimate the thickness of the haze and recover a high-quality haze-free image. Results on a variety of hazy images demonstrate the power of the proposed prior. Moreover, a high-quality depth map can also be obtained as a byproduct of haze removal.

3,668 citations

Journal ArticleDOI
TL;DR: A survey of recent publications concerning medical image registration techniques is presented, according to a model based on nine salient criteria, the main dichotomy of which is extrinsic versus intrinsic methods.

3,426 citations

Journal ArticleDOI
TL;DR: Applications of image registration include combining images of the same subject from different modalities, aligning temporal sequences of images to compensate for motion of the subject between scans, image guidance during interventions and aligning images from multiple subjects in cohort studies.
Abstract: Radiological images are increasingly being used in healthcare and medical research. There is, consequently, widespread interest in accurately relating information in the different images for diagnosis, treatment and basic science. This article reviews registration techniques used to solve this problem, and describes the wide variety of applications to which these techniques are applied. Applications of image registration include combining images of the same subject from different modalities, aligning temporal sequences of images to compensate for motion of the subject between scans, image guidance during interventions and aligning images from multiple subjects in cohort studies. Current registration algorithms can, in many cases, automatically register images that are related by a rigid body transformation (i.e. where tissue deformation can be ignored). There has also been substantial progress in non-rigid registration algorithms that can compensate for tissue deformation, or align images from different subjects. Nevertheless many registration problems remain unsolved, and this is likely to continue to be an active field of research in the future.

2,166 citations

01 Jan 2014
TL;DR: Lymphedema is a common complication after treatment for breast cancer and factors associated with increased risk of lymphedEMA include extent of axillary surgery, axillary radiation, infection, and patient obesity.

1,988 citations

Journal ArticleDOI
TL;DR: The magnitude of respiratory motion is described, radiotherapy specific problems caused by respiratory motion are discussed, techniques that explicitly manage respiratory motion during radiotherapy are explained, and recommendations in the application of these techniques for patient care are given.
Abstract: This document is the report of a task group of the AAPM and has been prepared primarily to advise medical physicists involved in the external-beam radiation therapy of patients with thoracic, abdominal, and pelvic tumors affected by respiratory motion. This report describes the magnitude of respiratory motion, discusses radiotherapy specific problems caused by respiratory motion, explains techniques that explicitly manage respiratory motion during radiotherapy and gives recommendations in the application of these techniques for patient care, including quality assurance (QA) guidelines for these devices and their use with conformal and intensity modulated radiotherapy. The technologies covered by this report are motion-encompassing methods, respiratory gated techniques, breath-hold techniques, forced shallow-breathing methods, and respiration-synchronized techniques. The main outcome of this report is a clinical process guide for managing respiratory motion. Included in this guide is the recommendation that tumor motion should be measured (when possible) for each patient for whom respiratory motion is a concern. If target motion is greater than 5 mm, a method of respiratory motion management is available, and if the patient can tolerate the procedure, respiratory motion management technology is appropriate. Respiratory motion management is also appropriate when the procedure will increase normal tissue sparing. Respiratory motion management involves further resources, education and the development of and adherence to QA procedures.

1,891 citations