scispace - formally typeset
Search or ask a question
Author

Marcel Worring

Bio: Marcel Worring is an academic researcher from University of Amsterdam. The author has contributed to research in topics: TRECVID & Image retrieval. The author has an hindex of 48, co-authored 341 publications receiving 17017 citations. Previous affiliations of Marcel Worring include Association for Computing Machinery & VU University Amsterdam.


Papers
More filters
Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,447 citations

Proceedings ArticleDOI
06 Nov 2005
TL;DR: It is shown by experiment on 184 hours of broadcast video data and for 20 semantic concepts, that late fusion tends to give slightly better performance for most concepts, however, for those concepts where early fusion performs better the difference is more significant.
Abstract: Semantic analysis of multimodal video aims to index segments of interest at a conceptual level. In reaching this goal, it requires an analysis of several information streams. At some point in the analysis these streams need to be fused. In this paper, we consider two classes of fusion schemes, namely early fusion and late fusion. The former fuses modalities in feature space, the latter fuses modalities in semantic space. We show by experiment on 184 hours of broadcast video data and for 20 semantic concepts, that late fusion tends to give slightly better performance for most concepts. However, for those concepts where early fusion performs better the difference is more significant.

749 citations

Proceedings ArticleDOI
23 Oct 2006
TL;DR: The challenge problem for generic video indexing is introduced to gain insight in intermediate steps that affect performance of multimedia analysis methods, while at the same time fostering repeatability of experiments.
Abstract: We introduce the challenge problem for generic video indexing to gain insight in intermediate steps that affect performance of multimedia analysis methods, while at the same time fostering repeatability of experiments. To arrive at a challenge problem, we provide a general scheme for the systematic examination of automated concept detection methods, by decomposing the generic video indexing problem into 2 unimodal analysis experiments, 2 multimodal analysis experiments, and 1 combined analysis experiment. For each experiment, we evaluate generic video indexing performance on 85 hours of international broadcast news data, from the TRECVID 2005/2006 benchmark, using a lexicon of 101 semantic concepts. By establishing a minimum performance on each experiment, the challenge problem allows for component-based optimization of the generic indexing issue, while simultaneously offering other researchers a reference for comparison during indexing methodology development. To stimulate further investigations in intermediate analysis steps that inuence video indexing performance, the challenge offers to the research community a manually annotated concept lexicon, pre-computed low-level multimedia features, trained classifier models, and five experiments together with baseline performance, which are all available at http://www.mediamill.nl/challenge/.

668 citations

Journal ArticleDOI
TL;DR: A unifying and multimodal framework is put forward, which views a video document from the perspective of its author, which forms the guiding principle for identifying index types, for which automatic methods are found in literature.
Abstract: Efficient and effective handling of video documents depends on the availability of indexes. Manual indexing is unfeasible for large video collections. In this paper we survey several methods aiming at automating this time and resource consuming process. Good reviews on single modality based video indexing have appeared in literature. Effective indexing, however, requires a multimodal approach in which either the most appropriate modality is selected or the different modalities are used in collaborative fashion. Therefore, instead of separately treating the different information sources involved, and their specific algorithms, we focus on the similarities and differences between the modalities. To that end we put forward a unifying and multimodal framework, which views a video document from the perspective of its author. This framework forms the guiding principle for identifying index types, for which automatic methods are found in literature. It furthermore forms the basis for categorizing these different methods.

481 citations

01 Jan 2001
TL;DR: In this paper, a unifying and multimodal framework is proposed to view a video document from the perspective of its author, which forms the guiding principle for identifying index types, for which automatic methods are found in literature.
Abstract: Efficient and effective handling of video documents depends on the availability of indexes. Manual indexing is unfeasible for large video collections. In this paper we survey several methods aiming at automating this time and resource consuming process. Good reviews on single modality based video indexing have appeared in literature. Effective indexing, however, requires a multimodal approach in which either the most appropriate modality is selected or the different modalities are used in collaborative fashion. Therefore, instead of separately treating the different information sources involved, and their specific algorithms, we focus on the similarities and differences between the modalities. To that end we put forward a unifying and multimodal framework, which views a video document from the perspective of its author. This framework forms the guiding principle for identifying index types, for which automatic methods are found in literature. It furthermore forms the basis for categorizing these different methods.

479 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art in evaluated methods for both classification and detection are reviewed, whether the methods are statistically different, what they are learning from the images, and what the methods find easy or confuse.
Abstract: The Pascal Visual Object Classes (VOC) challenge is a benchmark in visual object category recognition and detection, providing the vision and machine learning communities with a standard dataset of images and annotation, and standard evaluation procedures. Organised annually from 2005 to present, the challenge and its associated dataset has become accepted as the benchmark for object detection. This paper describes the dataset and evaluation procedure. We review the state-of-the-art in evaluated methods for both classification and detection, analyse whether the methods are statistically different, what they are learning from the images (e.g. the object or its context), and what the methods find easy or confuse. The paper concludes with lessons learnt in the three year history of the challenge, and proposes directions for future improvement and extension.

15,935 citations

Christopher M. Bishop1
01 Jan 2006
TL;DR: Probability distributions of linear models for regression and classification are given in this article, along with a discussion of combining models and combining models in the context of machine learning and classification.
Abstract: Probability Distributions.- Linear Models for Regression.- Linear Models for Classification.- Neural Networks.- Kernel Methods.- Sparse Kernel Machines.- Graphical Models.- Mixture Models and EM.- Approximate Inference.- Sampling Methods.- Continuous Latent Variables.- Sequential Data.- Combining Models.

10,141 citations

Journal ArticleDOI
TL;DR: The working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap are discussed, as well as aspects of system engineering: databases, system architecture, and evaluation.
Abstract: Presents a review of 200 references in content-based image retrieval. The paper starts with discussing the working conditions of content-based retrieval: patterns of use, types of pictures, the role of semantics, and the sensory gap. Subsequent sections discuss computational steps for image retrieval systems. Step one of the review is image processing for retrieval sorted by color, texture, and local geometry. Features for retrieval are discussed next, sorted by: accumulative and global features, salient points, object and shape features, signs, and structural combinations thereof. Similarity of pictures and objects in pictures is reviewed for each of the feature types, in close connection to the types and means of feedback the user of the systems is capable of giving by interaction. We briefly discuss aspects of system engineering: databases, system architecture, and evaluation. In the concluding section, we present our view on: the driving force of the field, the heritage from computer vision, the influence on computer vision, the role of similarity and of interaction, the need for databases, the problem of evaluation, and the role of the semantic gap.

6,447 citations

Book
30 Sep 2010
TL;DR: Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images and takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene.
Abstract: Humans perceive the three-dimensional structure of the world with apparent ease. However, despite all of the recent advances in computer vision research, the dream of having a computer interpret an image at the same level as a two-year old remains elusive. Why is computer vision such a challenging problem and what is the current state of the art? Computer Vision: Algorithms and Applications explores the variety of techniques commonly used to analyze and interpret images. It also describes challenging real-world applications where vision is being successfully used, both for specialized applications such as medical imaging, and for fun, consumer-level tasks such as image editing and stitching, which students can apply to their own personal photos and videos. More than just a source of recipes, this exceptionally authoritative and comprehensive textbook/reference also takes a scientific approach to basic vision problems, formulating physical models of the imaging process before inverting them to produce descriptions of a scene. These problems are also analyzed using statistical models and solved using rigorous engineering techniques Topics and features: structured to support active curricula and project-oriented courses, with tips in the Introduction for using the book in a variety of customized courses; presents exercises at the end of each chapter with a heavy emphasis on testing algorithms and containing numerous suggestions for small mid-term projects; provides additional material and more detailed mathematical topics in the Appendices, which cover linear algebra, numerical techniques, and Bayesian estimation theory; suggests additional reading at the end of each chapter, including the latest research in each sub-field, in addition to a full Bibliography at the end of the book; supplies supplementary course material for students at the associated website, http://szeliski.org/Book/. Suitable for an upper-level undergraduate or graduate-level course in computer science or engineering, this textbook focuses on basic techniques that work under real-world conditions and encourages students to push their creative boundaries. Its design and exposition also make it eminently suitable as a unique reference to the fundamental techniques and current research literature in computer vision.

4,146 citations