scispace - formally typeset
Search or ask a question
Author

Marcela F. Pasetti

Bio: Marcela F. Pasetti is an academic researcher from University of Maryland, Baltimore. The author has contributed to research in topics: Vaccination & Immunogenicity. The author has an hindex of 43, co-authored 171 publications receiving 5859 citations. Previous affiliations of Marcela F. Pasetti include University of Maryland, College Park & Harvard University.


Papers
More filters
Journal ArticleDOI
TL;DR: The most advanced strategies for Shigella vaccine development, the immune responses that are elicited following disease or vaccination, the factors that have accelerated or impeded Shigellosis vaccine development and the ideas for the way forward are discussed.
Abstract: More than 50 years of research has yielded numerous Shigella vaccine candidates that have exemplified both the promise of vaccine-induced prevention of shigellosis and the impediments to developing a safe and effective vaccine for widespread use, a goal that has yet to be attained. This Review discusses the most advanced strategies for Shigella vaccine development, the immune responses that are elicited following disease or vaccination, the factors that have accelerated or impeded Shigella vaccine development and our ideas for the way forward.

321 citations

Journal ArticleDOI
TL;DR: The first primary human macrophage-enteroid co-culture system is established, conditions that allow for a practical and reproducible culture model are defined, and its suitability to study gut physiology and host responses to enteric pathogens is demonstrated.
Abstract: Integration of the intestinal epithelium and the mucosal immune system is critical for gut homeostasis. The intestinal epithelium is a functional barrier that secludes luminal content, senses changes in the gut microenvironment, and releases immune regulators that signal underlying immune cells. However, interactions between epithelial and innate immune cells to maintain barrier integrity and prevent infection are complex and poorly understood. We developed and characterized a primary human macrophage-enteroid co-culture model for in-depth studies of epithelial and macrophage interactions. Human intestinal stem cell-derived enteroid monolayers co-cultured with human monocyte-derived macrophages were used to evaluate barrier function, cytokine secretion, and protein expression under basal conditions and following bacterial infection. Macrophages enhanced barrier function and maturity of enteroid monolayers as indicated by increased transepithelial electrical resistance and cell height. Communication between the epithelium and macrophages was demonstrated through morphological changes and cytokine production. Intraepithelial macrophage projections, efficient phagocytosis, and stabilized enteroid barrier function revealed a coordinated response to enterotoxigenic and enteropathogenic E. coli infections. In summary, we have established the first primary human macrophage-enteroid co-culture system, defined conditions that allow for a practical and reproducible culture model, and demonstrated its suitability to study gut physiology and host responses to enteric pathogens.

285 citations

Journal ArticleDOI
TL;DR: The intranasal monovalent adjuvanted Norwalk VLP vaccine was well tolerated and highly immunogenic and is a candidate for additional study.
Abstract: Background. Noroviruses cause significant morbidity and mortality from acute gastroenteritis in all age groups worldwide. Methods.We conducted 2 phase 1 double-blind, controlled studies of a virus-like particle (VLP) vaccine derived from norovirus GI.1 genotype adjuvanted with monophosphoryl lipid A (MPL) and the mucoadherent chitosan. Healthy subjects 18–49 years of age were randomized to 2 doses of intranasal Norwalk VLP vaccine or controls 21 days apart. Study 1 evaluated 5-, 15-, and 50-μg dosages of Norwalk antigen, and study 2 evaluated 50-and 100-μg dosages. Volunteers recorded symptoms for 7 days after dosing, and safety was followed up for 180 days. Blood samples were collected for serological profile, antibody secreting cells (ASCs), and analysis of ASC homing receptors. Results. The most common symptoms were nasal stuffiness, discharge, and sneezing. No vaccine-related serious adverse events occurred. Norwalk VLP-specific immunoglobulin G and immunoglobulin A antibodies increased 4.8-and 9.1-fold, respectively, for the 100-μg dosage level. All subjects tested who received the 50-or 100-μg vaccine dose developed immunoglobulin A ASCs. These cells expressed molecules associated with homing to mucosal and peripheral lymphoid tissues. Conclusions. The intranasal monovalent adjuvanted Norwalk VLP vaccine was well tolerated and highly immunogenic and is a candidate for additional study. Trial Registration. ClinicalTrials.gov identifier: {"type":"clinical-trial","attrs":{"text":"NCT00806962","term_id":"NCT00806962"}}NCT00806962.

210 citations

Journal ArticleDOI
TL;DR: In this article, a review of the immune responses elicited in humans by enteric vaccines is presented, focusing on the cross-talk between mucosal and systemic immunity, and identifying an immunological correlate of protection in the course of field trials of efficacy, animal models or human challenge studies.
Abstract: Understanding the mechanisms underlying the induction of immunity in the gastrointestinal mucosa following oral immunization and the cross-talk between mucosal and systemic immunity should expedite the development of vaccines to diminish the global burden caused by enteric pathogens. Identifying an immunological correlate of protection in the course of field trials of efficacy, animal models (when available), or human challenge studies is also invaluable. In industrialized country populations, live attenuated vaccines (e.g. polio, typhoid, and rotavirus) mimic natural infection and generate robust protective immune responses. In contrast, a major challenge is to understand and overcome the barriers responsible for the diminished immunogenicity and efficacy of the same enteric vaccines in underprivileged populations in developing countries. Success in developing vaccines against some enteric pathogens has heretofore been elusive (e.g. Shigella). Different types of oral vaccines can selectively or inclusively elicit mucosal secretory immunoglobulin A and serum immunoglobulin G antibodies and a variety of cell-mediated immune responses. Areas of research that require acceleration include interaction between the gut innate immune system and the stimulation of adaptive immunity, development of safe yet effective mucosal adjuvants, better understanding of homing to the mucosa of immunologically relevant cells, and elicitation of mucosal immunologic memory. This review dissects the immune responses elicited in humans by enteric vaccines.

196 citations

Journal ArticleDOI
22 Oct 2004-Vaccine
TL;DR: Transgenic corn expressing 1 mg of LT-B of Escherichia coli without buffer was fed to adult volunteers in three doses, and seven of nine volunteers developed rises in both serum IgG anti-LT and numbers of specific antibody secreting cells after vaccination.

182 citations


Cited by
More filters
Journal ArticleDOI
24 Dec 2004-Science

1,949 citations

Journal ArticleDOI
TL;DR: This report updates the 2017–18 recommendations of the Advisory Committee on Immunization Practices regarding the use of seasonal influenza vaccines in the United States and focuses on the recommendations for use of vaccines for the prevention and control of influenza during the 2018–19 season.
Abstract: This report updates the 2020-21 recommendations of the Advisory Committee on Immunization Practices (ACIP) regarding the use of seasonal influenza vaccines in the United States (MMWR Recomm Rep 2020;69[No. RR-8]). Routine annual influenza vaccination is recommended for all persons aged ≥6 months who do not have contraindications. For each recipient, a licensed and age-appropriate vaccine should be used. ACIP makes no preferential recommendation for a specific vaccine when more than one licensed, recommended, and age-appropriate vaccine is available. During the 2021-22 influenza season, the following types of vaccines are expected to be available: inactivated influenza vaccines (IIV4s), recombinant influenza vaccine (RIV4), and live attenuated influenza vaccine (LAIV4).The 2021-22 influenza season is expected to coincide with continued circulation of SARS-CoV-2, the virus that causes COVID-19. Influenza vaccination of persons aged ≥6 months to reduce prevalence of illness caused by influenza will reduce symptoms that might be confused with those of COVID-19. Prevention of and reduction in the severity of influenza illness and reduction of outpatient visits, hospitalizations, and intensive care unit admissions through influenza vaccination also could alleviate stress on the U.S. health care system. Guidance for vaccine planning during the pandemic is available at https://www.cdc.gov/vaccines/pandemic-guidance/index.html. Recommendations for the use of COVID-19 vaccines are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/covid-19.html, and additional clinical guidance is available at https://www.cdc.gov/vaccines/covid-19/clinical-considerations/covid-19-vaccines-us.html.Updates described in this report reflect discussions during public meetings of ACIP that were held on October 28, 2020; February 25, 2021; and June 24, 2021. Primary updates to this report include the following six items. First, all seasonal influenza vaccines available in the United States for the 2021-22 season are expected to be quadrivalent. Second, the composition of 2021-22 U.S. influenza vaccines includes updates to the influenza A(H1N1)pdm09 and influenza A(H3N2) components. U.S.-licensed influenza vaccines will contain hemagglutinin derived from an influenza A/Victoria/2570/2019 (H1N1)pdm09-like virus (for egg-based vaccines) or an influenza A/Wisconsin/588/2019 (H1N1)pdm09-like virus (for cell culture-based and recombinant vaccines), an influenza A/Cambodia/e0826360/2020 (H3N2)-like virus, an influenza B/Washington/02/2019 (Victoria lineage)-like virus, and an influenza B/Phuket/3073/2013 (Yamagata lineage)-like virus. Third, the approved age indication for the cell culture-based inactivated influenza vaccine, Flucelvax Quadrivalent (ccIIV4), has been expanded from ages ≥4 years to ages ≥2 years. Fourth, discussion of administration of influenza vaccines with other vaccines includes considerations for coadministration of influenza vaccines and COVID-19 vaccines. Providers should also consult current ACIP COVID-19 vaccine recommendations and CDC guidance concerning coadministration of these vaccines with influenza vaccines. Vaccines that are given at the same time should be administered in separate anatomic sites. Fifth, guidance concerning timing of influenza vaccination now states that vaccination soon after vaccine becomes available can be considered for pregnant women in the third trimester. As previously recommended, children who need 2 doses (children aged 6 months through 8 years who have never received influenza vaccine or who have not previously received a lifetime total of ≥2 doses) should receive their first dose as soon as possible after vaccine becomes available to allow the second dose (which must be administered ≥4 weeks later) to be received by the end of October. For nonpregnant adults, vaccination in July and August should be avoided unless there is concern that later vaccination might not be possible. Sixth, contraindications and precautions to the use of ccIIV4 and RIV4 have been modified, specifically with regard to persons with a history of severe allergic reaction (e.g., anaphylaxis) to an influenza vaccine. A history of a severe allergic reaction to a previous dose of any egg-based IIV, LAIV, or RIV of any valency is a precaution to use of ccIIV4. A history of a severe allergic reaction to a previous dose of any egg-based IIV, ccIIV, or LAIV of any valency is a precaution to use of RIV4. Use of ccIIV4 and RIV4 in such instances should occur in an inpatient or outpatient medical setting under supervision of a provider who can recognize and manage a severe allergic reaction; providers can also consider consulting with an allergist to help identify the vaccine component responsible for the reaction. For ccIIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any ccIIV of any valency or any component of ccIIV4 is a contraindication to future use of ccIIV4. For RIV4, history of a severe allergic reaction (e.g., anaphylaxis) to any RIV of any valency or any component of RIV4 is a contraindication to future use of RIV4. This report focuses on recommendations for the use of vaccines for the prevention and control of seasonal influenza during the 2021-22 influenza season in the United States. A brief summary of the recommendations and a link to the most recent Background Document containing additional information are available at https://www.cdc.gov/vaccines/hcp/acip-recs/vacc-specific/flu.html. These recommendations apply to U.S.-licensed influenza vaccines used according to Food and Drug Administration-licensed indications. Updates and other information are available from CDC's influenza website (https://www.cdc.gov/flu); vaccination and health care providers should check this site periodically for additional information.

1,388 citations

Journal ArticleDOI
TL;DR: This paper attempts to summarize current knowledge about immune responses to vaccines that correlate with protection, finding some vaccines have no true correlates, but only useful surrogates, for an unknown protective response.
Abstract: This paper attempts to summarize current knowledge about immune responses to vaccines that correlate with protection. Although the immune system is redundant, almost all current vaccines work through antibodies in serum or on mucosa that block infection or bacteremia/viremia and thus provide a correlate of protection. The functional characteristics of antibodies, as well as quantity, are important. Antibody may be highly correlated with protection or synergistic with other functions. Immune memory is a critical correlate: effector memory for short-incubation diseases and central memory for long-incubation diseases. Cellular immunity acts to kill or suppress intracellular pathogens and may also synergize with antibody. For some vaccines, we have no true correlates, but only useful surrogates, for an unknown protective response.

1,350 citations

Journal ArticleDOI
27 Sep 2019-Gut
TL;DR: Comprehensive up-to-date guidance is provided regarding indications for, initiation and monitoring of immunosuppressive therapies, nutrition interventions, pre-, peri- and postoperative management, as well as structure and function of the multidisciplinary team and integration between primary and secondary care.
Abstract: Ulcerative colitis and Crohn’s disease are the principal forms of inflammatory bowel disease. Both represent chronic inflammation of the gastrointestinal tract, which displays heterogeneity in inflammatory and symptomatic burden between patients and within individuals over time. Optimal management relies on understanding and tailoring evidence-based interventions by clinicians in partnership with patients. This guideline for management of inflammatory bowel disease in adults over 16 years of age was developed by Stakeholders representing UK physicians (British Society of Gastroenterology), surgeons (Association of Coloproctology of Great Britain and Ireland), specialist nurses (Royal College of Nursing), paediatricians (British Society of Paediatric Gastroenterology, Hepatology and Nutrition), dietitians (British Dietetic Association), radiologists (British Society of Gastrointestinal and Abdominal Radiology), general practitioners (Primary Care Society for Gastroenterology) and patients (Crohn’s and Colitis UK). A systematic review of 88 247 publications and a Delphi consensus process involving 81 multidisciplinary clinicians and patients was undertaken to develop 168 evidence- and expert opinion-based recommendations for pharmacological, non-pharmacological and surgical interventions, as well as optimal service delivery in the management of both ulcerative colitis and Crohn’s disease. Comprehensive up-to-date guidance is provided regarding indications for, initiation and monitoring of immunosuppressive therapies, nutrition interventions, pre-, peri- and postoperative management, as well as structure and function of the multidisciplinary team and integration between primary and secondary care. Twenty research priorities to inform future clinical management are presented, alongside objective measurement of priority importance, determined by 2379 electronic survey responses from individuals living with ulcerative colitis and Crohn’s disease, including patients, their families and friends.

1,140 citations

Journal ArticleDOI
TL;DR: A comprehensive review highlights recent advances in understanding of the intestinal pathotypes of E. coli, which carry an enormous potential to cause disease and continue to present challenges to human health.
Abstract: Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.

1,097 citations