scispace - formally typeset
Search or ask a question
Author

Marcella M. Mascarenhas

Bio: Marcella M. Mascarenhas is an academic researcher from Harvard University. The author has contributed to research in topics: Lung injury & Hyaluronic acid. The author has an hindex of 5, co-authored 7 publications receiving 1578 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: It is reported that hyaluronan degradation products require MyD88 and both Toll-like receptor (TLR)4 and TLR2 in vitro and in vivo to initiate inflammatory responses in acute lung injury and epithelial cell apoptosis after lung injury.
Abstract: Mechanisms that regulate inflammation and repair after acute lung injury are incompletely understood. The extracellular matrix glycosaminoglycan hyaluronan is produced after tissue injury and impaired clearance results in unremitting inflammation. Here we report that hyaluronan degradation products require MyD88 and both Toll-like receptor (TLR)4 and TLR2 in vitro and in vivo to initiate inflammatory responses in acute lung injury. Hyaluronan fragments isolated from serum of individuals with acute lung injury stimulated macrophage chemokine production in a TLR4- and TLR2-dependent manner. Myd88(-/-) and Tlr4(-/-)Tlr2(-/-) mice showed impaired transepithelial migration of inflammatory cells but decreased survival and enhanced epithelial cell apoptosis after lung injury. Lung epithelial cell-specific overexpression of high-molecular-mass hyaluronan was protective against acute lung injury. Furthermore, epithelial cell-surface hyaluronan was protective against apoptosis, in part, through TLR-dependent basal activation of NF-kappaB. Hyaluronan-TLR2 and hyaluronan-TLR4 interactions provide signals that initiate inflammatory responses, maintain epithelial cell integrity and promote recovery from acute lung injury.

1,329 citations

Journal ArticleDOI
TL;DR: It is concluded that high VT induced low-molecular-weight hyaluronan production is dependent on de novo synthesis through hyaltonan synthase 3, and plays a role in the inflammatory response of ventilator-induced lung injury.
Abstract: We recently found that low-molecular-weight hyaluronan was induced by cyclic stretch in lung fibroblasts and accumulated in lungs from animals with ventilator-induced lung injury. The low-molecular-weight hyaluronan produced by stretch increased interleukin-8 production in epithelial cells, and was accompanied by an upregulation of hyaluronan synthase-3 mRNA. We hypothesized that low-molecular-weight hyaluronan induced by high VT was dependent on hyaluronan synthase 3, and was associated with ventilator-induced lung injury. Effects of high VT ventilation in C57BL/6 wild-type and hyaluronan synthase-3 knockout mice were compared. Significantly increased neutrophil infiltration, macrophage inflammatory protein-2 production, and lung microvascular leak were found in wild-type animals ventilated with high VT. These reactions were significantly reduced in hyaluronan synthase-3 knockout mice, except the capillary leak. Wild-type mice ventilated with high VT were found to have increased low-molecular-weight hyaluronan in lung tissues and concomitant increased expression of hyaluronan synthase-3 mRNA, neither of which was found in hyaluronan synthase-3 knockout mice. We conclude that high VT induced low-molecular-weight hyaluronan production is dependent on de novo synthesis through hyaluronan synthase 3, and plays a role in the inflammatory response of ventilator-induced lung injury.

123 citations

Journal ArticleDOI
TL;DR: It is concluded that stretch-induced transcriptional regulation of IL-8 mRNA andIL-8 production was via activation of AP-1 and NF-kappaB and was dependent on JNK and NIK activation, respectively.
Abstract: Positive pressure ventilation with large tidal volumes has been shown to cause release of cytokines, including interleukin (IL)-8. The mechanisms regulating lung stretch-induced cytokine production...

110 citations

Journal ArticleDOI
TL;DR: Results indicated that de novo synthesis of LMW HA was induced in lung fibroblasts by stretch via tyrosine kinase signaling pathways, and may play a role in augmenting induction of proinflammatory cytokines in VILI.
Abstract: Mechanical ventilation has been shown to cause ventilator-induced lung injury (VILI), probably by overdistending or stretching the lung. Hyaluronan (HA), a component of the extracellular matrix, in low molecular weight (LMW) forms has been shown to induce cytokine production. LMW HA is produced by hyaluronan synthase 3 (HAS 3). We found that HAS 3 mRNA expression was upregulated and that LMW HA accumulated in an animal model of VILI. We hypothesized that stretch-induced LMW HA production that causes cytokine release in VILI was dependent on HAS 3 mRNA expression. We explored this hypothesis with in vitro lung cell stretch. Cell stretch induced HAS 3 mRNA expression and LMW HA in fibroblasts. Nonspecific inhibitors of HAS 3 (cyclohexamide and dexamethasone), a nonspecific inhibitor of protein tyrosine kinases (genistein), and a janus kinase 2 inhibitor (AG490) blocked stretch-induced HAS 3 expression and synthesis of LMW HA. Stretch-induced LMW HA from fibroblasts caused a significant dose-dependent increase in interleukin-8 production both in static and stretched epithelial cells. These results indicated that de novo synthesis of LMW HA was induced in lung fibroblasts by stretch via tyrosine kinase signaling pathways, and may play a role in augmenting induction of proinflammatory cytokines in VILI.

106 citations

Book ChapterDOI
01 Jan 2004
TL;DR: Signal transduction by CD44 has been associated with the activation of signaling molecules that support cell growth, including members of the Ras family of small GTP-binding proteins; an intracellular membraneassociated tyrosine kinase, focal adhesion kinase (FAK); phosphtidylinositol 3-kinase (PI3K) and its downstream target, the Akt kinase.
Abstract: Signal transduction by CD44 has been associated with the activation of signaling molecules that support cell growth, including members of the Ras family of small GTP-binding proteins; an intracellular membraneassociated tyrosine kinase, focal adhesion kinase (FAK); phosphtidylinositol 3-kinase (PI3K) and its downstream target, the Akt kinase; the cytoplasmic serine/threonine kinase, p42/p44 mitogen-activated protein kinase (MAPK); and members of the src family of cytoplasmic tyrosine kinases. These proteins have been independently shown to support cell growth and survival in many cell types. The pathways activated by CD44, and the mechanism of activation, appear to depend on both the cell type examined and the splice variant of CD44 that is expressed. Further, PH-20 acts as both a hyaluronidase and an HA receptor, and signaltransduction downstream of PH-20 activation has mostly been reported in relation to sperm maturation and function. In addition, the discovery of RHAMM as a key regulator of cellular migration and proliferation led to the hypothesis that RHAMM could also function downstream of receptor kinase signaling. A number of studies with transformed cell lines indicate that RHAMM is required for H-Ras and serum downstream activation of p42/p44 MAPK. The ability of PDGF to signal through its tyrosine kinase receptor and activate p42/p44 MAPK, as well as other phosphoproteins, depended upon the level of RHAMM expression on the surface of 10T1/2 murine fibroblasts.

6 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Recent advances that have been made by research into the role of TLR biology in host defense and disease are described.
Abstract: The discovery of Toll-like receptors (TLRs) as components that recognize conserved structures in pathogens has greatly advanced understanding of how the body senses pathogen invasion, triggers innate immune responses and primes antigen-specific adaptive immunity. Although TLRs are critical for host defense, it has become apparent that loss of negative regulation of TLR signaling, as well as recognition of self molecules by TLRs, are strongly associated with the pathogenesis of inflammatory and autoimmune diseases. Furthermore, it is now clear that the interaction between TLRs and recently identified cytosolic innate immune sensors is crucial for mounting effective immune responses. Here we describe the recent advances that have been made by research into the role of TLR biology in host defense and disease.

7,494 citations

Journal ArticleDOI
Ruslan Medzhitov1
23 Jul 2008-Nature
TL;DR: This work has shown that tissue stress or malfunction induces an adaptive response that is intermediate between the basal homeostatic state and a classic inflammatory response, which is referred to here as para-inflammation.
Abstract: Inflammation underlies a wide variety of physiological and pathological processes. Although the pathological aspects of many types of inflammation are well appreciated, their physiological functions are mostly unknown. The classic instigators of inflammation - infection and tissue injury - are at one end of a large range of adverse conditions that induce inflammation, and they trigger the recruitment of leukocytes and plasma proteins to the affected tissue site. Tissue stress or malfunction similarly induces an adaptive response, which is referred to here as para-inflammation. This response relies mainly on tissue-resident macrophages and is intermediate between the basal homeostatic state and a classic inflammatory response. Para-inflammation is probably responsible for the chronic inflammatory conditions that are associated with modern human diseases.

4,832 citations

Journal ArticleDOI
TL;DR: A previously unrecognized pathway for the activation of tumor antigen–specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs) is described.
Abstract: Conventional cancer treatments rely on radiotherapy and chemotherapy. Such treatments supposedly mediate their effects via the direct elimination of tumor cells. Here we show that the success of some protocols for anticancer therapy depends on innate and adaptive antitumor immune responses. We describe in both mice and humans a previously unrecognized pathway for the activation of tumor antigen-specific T-cell immunity that involves secretion of the high-mobility-group box 1 (HMGB1) alarmin protein by dying tumor cells and the action of HMGB1 on Toll-like receptor 4 (TLR4) expressed by dendritic cells (DCs). During chemotherapy or radiotherapy, DCs require signaling through TLR4 and its adaptor MyD88 for efficient processing and cross-presentation of antigen from dying tumor cells. Patients with breast cancer who carry a TLR4 loss-of-function allele relapse more quickly after radiotherapy and chemotherapy than those carrying the normal TLR4 allele. These results delineate a clinically relevant immunoadjuvant pathway triggered by tumor cell death.

2,666 citations

Journal ArticleDOI
TL;DR: The triggers and receptor pathways that result in sterile inflammation and its impact on human health are reviewed.
Abstract: Over the past several decades, much has been revealed about the nature of the host innate immune response to microorganisms, with the identification of pattern recognition receptors (PRRs) and pathogen-associated molecular patterns, which are the conserved microbial motifs sensed by these receptors. It is now apparent that these same PRRs can also be activated by non-microbial signals, many of which are considered as damage-associated molecular patterns. The sterile inflammation that ensues either resolves the initial insult or leads to disease. Here, we review the triggers and receptor pathways that result in sterile inflammation and its impact on human health.

2,481 citations

Journal ArticleDOI
15 Jan 2010-Science
TL;DR: Questions are discussed including the mechanisms by which pathogen-specific innate immune recognition activates antigen-specific adaptive immune responses and the roles of different types of innate immune Recognition in host defense from infection and injury.
Abstract: Twenty years after the proposal that pattern recognition receptors detect invasion by microbial pathogens, the field of immunology has witnessed several discoveries that have elucidated receptors and signaling pathways of microbial recognition systems and how they control the generation of T and B lymphocyte-mediated immune responses. However, there are still many fundamental questions that remain poorly understood, even though sometimes the answers are assumed to be known. Here, we discuss some of these questions, including the mechanisms by which pathogen-specific innate immune recognition activates antigen-specific adaptive immune responses and the roles of different types of innate immune recognition in host defense from infection and injury.

1,998 citations