scispace - formally typeset
Search or ask a question
Author

Marcelo A. C. Fernandes

Bio: Marcelo A. C. Fernandes is an academic researcher from Federal University of Rio Grande do Norte. The author has contributed to research in topics: Field-programmable gate array & Throughput (business). The author has an hindex of 12, co-authored 85 publications receiving 419 citations. Previous affiliations of Marcelo A. C. Fernandes include University of Rio Grande & State University of Campinas.


Papers
More filters
Journal ArticleDOI
TL;DR: A parallel fixed-point Q-learning algorithm architecture implemented on field programmable gate arrays (FPGA) focusing on optimizing the system processing time is proposed.
Abstract: Q-learning is an off-policy reinforcement learning technique, which has the main advantage of obtaining an optimal policy interacting with an unknown model environment. This paper proposes a parallel fixed-point Q-learning algorithm architecture implemented on field programmable gate arrays (FPGA) focusing on optimizing the system processing time. The convergence results are presented, and the processing time and occupied area were analyzed for different states and actions sizes scenarios and various fixed-point formats. The studies concerning the accuracy of the Q-learning technique response and resolution error associated with a decrease in the number of bits were also carried out for hardware implementation. The architecture implementation details were featured. The entire project was developed using the system generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

58 citations

Journal ArticleDOI
TL;DR: This paper briefly review recent work related to the implementation of deep learning algorithms in FPGAs, and analyzes and compares the design requirements and features of existing topologies to finally propose development strategies and implementation architectures for better use of FPGA-based deep learning topologies.

52 citations

Journal ArticleDOI
29 Sep 2014-Sensors
TL;DR: This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained with a least mean square (LMS) algorithm.
Abstract: This paper proposes a parallel fixed point radial basis function (RBF) artificial neural network (ANN), implemented in a field programmable gate array (FPGA) trained online with a least mean square (LMS) algorithm. The processing time and occupied area were analyzed for various fixed point formats. The problems of precision of the ANN response for nonlinear classification using the XOR gate and interpolation using the sine function were also analyzed in a hardware implementation. The entire project was developed using the System Generator platform (Xilinx), with a Virtex-6 xc6vcx240t-1ff1156 as the target FPGA.

35 citations

Journal ArticleDOI
TL;DR: A neural network hardware implementation developed on a field-programmable gate array (FPGA) and supports deep neural network trained with the stacked sparse autoencoder (SSAE) technique, enabling deep learning techniques to be applied for problems with large data amounts.
Abstract: Deep learning techniques have been gaining prominence in the research world in the past years; however, the deep learning algorithms have high computational cost, making them hard to be used to several commercial applications. On the other hand, new alternatives have been studied and some methodologies focusing on accelerating complex algorithms including those based on reconfigurable hardware has been showing significant results. Therefore, the objective of this paper is to propose a neural network hardware implementation to be used in deep learning applications. The implementation was developed on a field-programmable gate array (FPGA) and supports deep neural network (DNN) trained with the stacked sparse autoencoder (SSAE) technique. In order to allow DNNs with several inputs and layers on the FPGA, the systolic array technique was used in the entire architecture. Details regarding the designed implementation were evidenced, as well as the hardware area occupation and the processing time for two different implementations. The results showed that both implementations achieved high throughput enabling deep learning techniques to be applied for problems with large data amounts.

33 citations

Journal ArticleDOI
TL;DR: In this paper, the authors proposed a full-parallel implementation of a GA algorithm on a field-programmable gate array (FPGA) to optimize the system's processing time and area occupancy.
Abstract: Genetic algorithms (GAs) are used to solve search and optimization problems in which an optimal solution can be found using an iterative process with probabilistic and non-deterministic transitions. However, depending on the problem’s nature, the time required to find a solution can be high in sequential machines due to the computational complexity of genetic algorithms. This work proposes a full-parallel implementation of a genetic algorithm on field-programmable gate array (FPGA). Optimization of the system’s processing time is the main goal of this project. Results associated with the processing time and area occupancy (on FPGA) for various population sizes are analyzed. Studies concerning the accuracy of the GA response for the optimization of two variables functions were also evaluated for the hardware implementation. However, the high-performance implementation proposed in this paper is able to work with more variable from some adjustments on hardware architecture. The results showed that the GA full-parallel implementation achieved throughput about 16 millions of generations per second and speedups between 17 and 170,000 associated with several works proposed in the literature.

30 citations


Cited by
More filters
Journal Article
TL;DR: This book by a teacher of statistics (as well as a consultant for "experimenters") is a comprehensive study of the philosophical background for the statistical design of experiment.
Abstract: THE DESIGN AND ANALYSIS OF EXPERIMENTS. By Oscar Kempthorne. New York, John Wiley and Sons, Inc., 1952. 631 pp. $8.50. This book by a teacher of statistics (as well as a consultant for \"experimenters\") is a comprehensive study of the philosophical background for the statistical design of experiment. It is necessary to have some facility with algebraic notation and manipulation to be able to use the volume intelligently. The problems are presented from the theoretical point of view, without such practical examples as would be helpful for those not acquainted with mathematics. The mathematical justification for the techniques is given. As a somewhat advanced treatment of the design and analysis of experiments, this volume will be interesting and helpful for many who approach statistics theoretically as well as practically. With emphasis on the \"why,\" and with description given broadly, the author relates the subject matter to the general theory of statistics and to the general problem of experimental inference. MARGARET J. ROBERTSON

13,333 citations

Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: It is reported that digital solutions and innovative technologies have mainly been proposed for the diagnosis of COVID-19 and digital solutions that integrate with the traditional methods, such as AI-based diagnostic algorithms based both on imaging and/or clinical data, seem promising.
Abstract: Background: The COVID-19 pandemic is favoring digital transitions in many industries and in society as a whole. Health care organizations have responded to the first phase of the pandemic by rapidly adopting digital solutions and advanced technology tools. Objective: The aim of this review is to describe the digital solutions that have been reported in the early scientific literature to mitigate the impact of COVID-19 on individuals and health systems. Methods: We conducted a systematic review of early COVID-19–related literature (from January 1 to April 30, 2020) by searching MEDLINE and medRxiv with appropriate terms to find relevant literature on the use of digital technologies in response to the pandemic. We extracted study characteristics such as the paper title, journal, and publication date, and we categorized the retrieved papers by the type of technology and patient needs addressed. We built a scoring rubric by cross-classifying the patient needs with the type of technology. We also extracted information and classified each technology reported by the selected articles according to health care system target, grade of innovation, and scalability to other geographical areas. Results: The search identified 269 articles, of which 124 full-text articles were assessed and included in the review after screening. Most of the selected articles addressed the use of digital technologies for diagnosis, surveillance, and prevention. We report that most of these digital solutions and innovative technologies have been proposed for the diagnosis of COVID-19. In particular, within the reviewed articles, we identified numerous suggestions on the use of artificial intelligence (AI)–powered tools for the diagnosis and screening of COVID-19. Digital technologies are also useful for prevention and surveillance measures, such as contact-tracing apps and monitoring of internet searches and social media usage. Fewer scientific contributions address the use of digital technologies for lifestyle empowerment or patient engagement. Conclusions: In the field of diagnosis, digital solutions that integrate with traditional methods, such as AI-based diagnostic algorithms based both on imaging and clinical data, appear to be promising. For surveillance, digital apps have already proven their effectiveness; however, problems related to privacy and usability remain. For other patient needs, several solutions have been proposed, such as telemedicine or telehealth tools. These tools have long been available, but this historical moment may actually be favoring their definitive large-scale adoption. It is worth taking advantage of the impetus provided by the crisis; it is also important to keep track of the digital solutions currently being proposed to implement best practices and models of care in future and to adopt at least some of the solutions proposed in the scientific literature, especially in national health systems, which have proved to be particularly resistant to the digital transition in recent years.

239 citations

Journal ArticleDOI
TL;DR: A comparison in the robustness of Interval Type-2 and Generalized Type- 2 Fuzzy Logic Controllers is presented, in order to generate criteria to decide which type of controller is better in specific applications.
Abstract: Nowadays Fuzzy logic in control applications is a well-recognized alternative, and this is thanks to its inherent advantages as its robustness. However, the Type-2 Fuzzy Logic approach, allows managing uncertainty in the model. Type-2 Fuzzy Logic has recently shown to provide significant improvement in image processing applications, however it is also important to analyze its impact in controller performance. This paper is presenting a comparison in the robustness of Interval Type-2 and Generalized Type-2 Fuzzy Logic Controllers, in order to generate criteria to decide which type of controller is better in specific applications. The plants considered in the experimentation are two benchmark control plants and we report the Integral Squared Error (ISE), Integral Absolute Error (IAE) and Integral Time-weighted Absolute Error (ITAE) performance metrics, and also another important metric reported is the execution time. Based on the experimental results, Fuzzy Logic Controller selection criteria are proposed according to the performance and execution time requirements.

170 citations