scispace - formally typeset
Search or ask a question
Author

Marcelo J. Villar

Bio: Marcelo J. Villar is an academic researcher from Austral University. The author has contributed to research in topics: Galanin & Neuropeptide. The author has an hindex of 40, co-authored 120 publications receiving 6136 citations. Previous affiliations of Marcelo J. Villar include Stockholm University & Karolinska Institutet.


Papers
More filters
Journal ArticleDOI
TL;DR: The results suggest that intraventricular injection of colchicine is a stressful stimulus and support the view that several catecholamine cell groups in the lower brainstem are part of the brain circuitry mediating stress reactions, as are the hypothalamic neurons that contain corticotropin-releasing factor.
Abstract: The effect of intracerebroventricular injection of the mitosis inhibitor colchicine and of immobilization stress, subcutaneous injection of capsaicin, and intraperitoneal injection of hypertonic salt solution on expression of c-Fos-like immunoreactivity was studied in the rat brain with immunohistochemistry. All the procedures induced c-Fos immunoreactivity in parvocellular neurons of the paraventricular nucleus, and many of these neurons also contained corticotropin-releasing factor immunoreactivity. c-Fos immunoreactivity was also observed, for example, in subpopulations of neurons in the locus coeruleus, the ventrolateral medulla oblongata, and the nucleus tractus solitarii. Many of these cells also expressed catecholamine-synthesizing enzymes. The results suggest that intraventricular injection of colchicine is a stressful stimulus and support the view that several catecholamine cell groups in the lower brainstem are part of the brain circuitry mediating stress reactions, as are the hypothalamic neurons that contain corticotropin-releasing factor.

526 citations

Journal ArticleDOI
TL;DR: The results demonstrate that when primary sensory neurons are peripherally lesioned they respond in a complex manner, altering their normal production of peptides by increasing or decreasing their synthesis.

457 citations

Journal ArticleDOI
TL;DR: Some primary sensory neurons react to transection of their peripheral branches by expressing increased GAL levels, and this reaction has been described by other groups for vasoactive intestinal polypeptide.

444 citations

Journal ArticleDOI
TL;DR: Findings support a dual mechanism for NO in the control of anterior pituitary hormone secretion, an autocrine mediation of luteinizing hormone release on gonadotrophs, and a paracrine effect on growth hormone secretion involving folliculo-stellate cells closely related to somatotrophic cells.
Abstract: By using immunohistochemistry and in situ hybridization, we have demonstrated that the nitric oxide (NO)-synthesizing enzyme NO synthase is present in gonadotrophs and in folliculo-stellate cells of the anterior pituitary gland of male and female rats. A marked increase in levels of NO synthase protein and mRNA was observed after gonadectomy. In vitro studies on dispersed anterior pituitary cells suggest that NO inhibits gonadotropin-releasing-hormone-stimulated luteinizing hormone release. An inhibitory effect of NO has also been shown on growth-hormone-releasing-hormone-stimulated release of growth hormone [Kato, M. (1992) Endocrinology 131, 2133-2138]. Thus these findings support a dual mechanism for NO in the control of anterior pituitary hormone secretion, an autocrine mediation of luteinizing hormone release on gonadotrophs, and a paracrine effect on growth hormone secretion involving folliculo-stellate cells closely related to somatotrophs. We speculate that NO may participate in producing the pulsatile secretion patterns of these two pituitary hormones.

265 citations

Journal ArticleDOI
TL;DR: The results confirm the traditional view that hypothalamic magnocellular neurons in the supraoptic and paraventricular nuclei contain two separate cell populations, characterized by vasopressin and oxytocin, respectively, and that they contain additional messenger molecules in specific patterns.

184 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The purpose of this review is to provide a comprehensive survey of the current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.
Abstract: Prolactin is a protein hormone of the anterior pituitary gland that was originally named for its ability to promote lactation in response to the suckling stimulus of hungry young mammals. We now know that prolactin is not as simple as originally described. Indeed, chemically, prolactin appears in a multiplicity of posttranslational forms ranging from size variants to chemical modifications such as phosphorylation or glycosylation. It is not only synthesized in the pituitary gland, as originally described, but also within the central nervous system, the immune system, the uterus and its associated tissues of conception, and even the mammary gland itself. Moreover, its biological actions are not limited solely to reproduction because it has been shown to control a variety of behaviors and even play a role in homeostasis. Prolactin-releasing stimuli not only include the nursing stimulus, but light, audition, olfaction, and stress can serve a stimulatory role. Finally, although it is well known that dopamine of hypothalamic origin provides inhibitory control over the secretion of prolactin, other factors within the brain, pituitary gland, and peripheral organs have been shown to inhibit or stimulate prolactin secretion as well. It is the purpose of this review to provide a comprehensive survey of our current understanding of prolactin's function and its regulation and to expose some of the controversies still existing.

2,193 citations

Journal ArticleDOI
01 Mar 1993-Pain
TL;DR: This review examines the clinical and experimental evidence which points to a contribution of central Neurol plasticity to the development of pathological pain, and assesses the physiological, biochemical, cellular and molecular mechanisms that underlie plasticity induced in the central nervous system in response to noxious peripheral stimulation.
Abstract: Peripheral tissue damage or nerve injury often leads to pathological pain processes, such as spontaneous pain, hyperalgesia and allodynia, that persist for years or decades after all possible tissue healing has occurred. Although peripheral neural mechanisms, such as nociceptor sensitization and neuroma formation, contribute to these pathological pain processes, recent evidence indicates that changes in central neural function may also play a significant role. In this review, we examine the clinical and experimental evidence which points to a contribution of central neural plasticity to the development of pathological pain. We also assess the physiological, biochemical, cellular and molecular mechanisms that underlie plasticity induced in the central nervous system (CNS) in response to noxious peripheral stimulation. Finally, we examine theories which have been proposed to explain how injury or noxious stimulation lead to alterations in CNS function which influence subsequent pain experience.

1,974 citations

Journal Article
TL;DR: This paper focuses on hot pepper, which is eaten on a daily basis by an estimated one-quarter of the world’s population and has potential to be a biological target for regenerative medicine.
Abstract: Natural products afford a window of opportunity to study important biology. If the natural product is used or abused by human beings, finding its biological target(s) is all the more significant. Hot pepper is eaten on a daily basis by an estimated one-quarter of the world’s population and

1,848 citations

Journal ArticleDOI
TL;DR: A global account of mechanisms involved in the induction of pain is provided, including neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres.

1,752 citations