scispace - formally typeset
Search or ask a question
Author

Marcelo J. Yanovsky

Bio: Marcelo J. Yanovsky is an academic researcher from Fundación Instituto Leloir. The author has contributed to research in topics: Circadian clock & Arabidopsis. The author has an hindex of 44, co-authored 93 publications receiving 7949 citations. Previous affiliations of Marcelo J. Yanovsky include National Scientific and Technical Research Council & Scripps Research Institute.


Papers
More filters
Journal ArticleDOI
03 Aug 2001-Science
TL;DR: It is shown that both proteins bind to a region in the TOC1 promoter that is critical for its clock regulation, and these interactions form a loop critical for clock function inArabidopsis.
Abstract: The interactive regulation between clock genes is central for oscillator function. Here, we show interactions between the Arabidopsis clock genes LATE ELONGATED HYPOCOTYL (LHY), CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), and TIMING OF CAB EXPRESSION 1 (TOC1). The MYB transcription factors LHY and CCA1 negatively regulate TOC1 expression. We show that both proteins bind to a region in the TOC1 promoter that is critical for its clock regulation. Conversely, TOC1 appears to participate in the positive regulation of LHY and CCA1 expression. Our results indicate that these interactions form a loop critical for clock function in Arabidopsis.

1,063 citations

Journal ArticleDOI
19 Sep 2002-Nature
TL;DR: It is concluded that an external coincidence mechanism, based on the endogenous circadian control of CO messenger RNA levels, and the modulation of CO function by light, constitutes the molecular basis for the regulation of flowering time by daylength in Arabidopsis.
Abstract: Several organisms have evolved the ability to measure daylength, or photoperiod, allowing them to adjust their development in anticipation of annual seasonal changes. Daylength measurement requires the integration of temporal information, provided by the circadian system, with light/dark discrimination, initiated by specific photoreceptors. Here we demonstrate that in Arabidopsis this integration takes place at the level of CONSTANS (CO)1 function. CO is a transcriptional activator that accelerates flowering time in long days, at least in part by inducing the expression of FLOWERING LOCUS T (FT)2,3,4,5. First, we show that precise clock control of the timing of CO expression, such that it is high during daytime only in long days, is critical for daylength discrimination. We then provide evidence that CO activation of FT expression requires the presence of light perceived through cryptochrome 2 (cry2) or phytochrome A (phyA). We conclude that an external coincidence mechanism, based on the endogenous circadian control of CO messenger RNA levels, and the modulation of CO function by light, constitutes the molecular basis for the regulation of flowering time by daylength in Arabidopsis.

652 citations

Journal ArticleDOI
TL;DR: A hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data is described that identifies at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX.
Abstract: Correct daily phasing of transcription confers an adaptive advantage to almost all organisms, including higher plants In this study, we describe a hypothesis-driven network discovery pipeline that identifies biologically relevant patterns in genome-scale data To demonstrate its utility, we analyzed a comprehensive matrix of time courses interrogating the nuclear transcriptome of Arabidopsis thaliana plants grown under different thermocycles, photocycles, and circadian conditions We show that 89% of Arabidopsis transcripts cycle in at least one condition and that most genes have peak expression at a particular time of day, which shifts depending on the environment Thermocycles alone can drive at least half of all transcripts critical for synchronizing internal processes such as cell cycle and protein synthesis We identified at least three distinct transcription modules controlling phase-specific expression, including a new midnight specific module, PBX/TBX/SBX We validated the network discovery pipeline, as well as the midnight specific module, by demonstrating that the PBX element was sufficient to drive diurnal and circadian condition-dependent expression Moreover, we show that the three transcription modules are conserved across Arabidopsis, poplar, and rice These results confirm the complex interplay between thermocycles, photocycles, and the circadian clock on the daily transcription program, and provide a comprehensive view of the conserved genomic targets for a transcriptional network key to successful adaptation

518 citations

Journal ArticleDOI
TL;DR: It is proposed that the Arabidopsis circadian oscillator is composed of several interlocking positive and negative feedback loops, a feature of clock regulation that appears broadly conserved between plants, fungi, and animals.

428 citations

Journal ArticleDOI
TL;DR: In this article, the authors used an oligonucleotide-based high-density array to identify clock-controlled output genes, and found genes regulating various physiological processes under circadian transcriptional regulation, ranging from protein stability and degradation, signal transduction, heme metabolism, detoxification, and immunity.
Abstract: In Drosophila, a number of key processes such as emergence from the pupal case, locomotor activity, feeding, olfaction, and aspects of mating behavior are under circadian regulation. Although we have a basic understanding of how the molecular oscillations take place, a clear link between gene regulation and downstream biological processes is still missing. To identify clock-controlled output genes, we have used an oligonucleotide-based high-density array that interrogates gene expression changes on a whole genome level. We found genes regulating various physiological processes to be under circadian transcriptional regulation, ranging from protein stability and degradation, signal transduction, heme metabolism, detoxification, and immunity. By comparing rhythmically expressed genes in the fly head and body, we found that the clock has adapted its output functions to the needs of each particular tissue, implying that tissue-specific regulation is superimposed on clock control of gene expression. Finally, taking full advantage of the fly as a model system, we have identified and characterized a cycling potassium channel protein as a key step in linking the transcriptional feedback loop to rhythmic locomotor behavior.

339 citations


Cited by
More filters
Journal ArticleDOI
01 Oct 2004-Science
TL;DR: The 34 million-base-pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand base-pair mitochondrial genomes were reported in this article.
Abstract: Diatoms are unicellular algae with plastids acquired by secondary endosymbiosis. They are responsible for approximately 20% of global carbon fixation. We report the 34 million-base pair draft nuclear genome of the marine diatom Thalassiosira pseudonana and its 129 thousand-base pair plastid and 44 thousand-base pair mitochondrial genomes. Sequence and optical restriction mapping revealed 24 diploid nuclear chromosomes. We identified novel genes for silicic acid transport and formation of silica-based cell walls, high-affinity iron uptake, biosynthetic enzymes for several types of polyunsaturated fatty acids, use of a range of nitrogenous compounds, and a complete urea cycle, all attributes that allow diatoms to prosper in aquatic environments.

1,945 citations

Journal ArticleDOI
18 May 2007-Science
TL;DR: It is concluded that FT protein acts as a long-distance signal that induces Arabidopsis flowering, and evidence that FT does not activate an intermediate messenger in leaves is provided.
Abstract: In plants, seasonal changes in day length are perceived in leaves, which initiate long-distance signaling that induces flowering at the shoot apex. The identity of the long-distance signal has yet to be determined. In Arabidopsis, activation of FLOWERING LOCUS T (FT) transcription in leaf vascular tissue (phloem) induces flowering. We found that FT messenger RNA is required only transiently in the leaf. In addition, FT fusion proteins expressed specifically in phloem cells move to the apex and move long distances between grafted plants. Finally, we provide evidence that FT does not activate an intermediate messenger in leaves. We conclude that FT protein acts as a long-distance signal that induces Arabidopsis flowering.

1,846 citations

Journal ArticleDOI
TL;DR: This review summarizes knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.
Abstract: The multifunctional regulator nuclear factor erythroid 2-related factor (Nrf2) is considered not only as a cytoprotective factor regulating the expression of genes coding for anti-oxidant, anti-inflammatory and detoxifying proteins, but it is also a powerful modulator of species longevity. The vertebrate Nrf2 belongs to Cap ‘n’ Collar (Cnc) bZIP family of transcription factors and shares a high homology with SKN-1 from Caenorhabditis elegans or CncC found in Drosophila melanogaster. The major characteristics of Nrf2 are to some extent mimicked by Nrf2-dependent genes and their proteins including heme oxygenase-1 (HO-1), which besides removing toxic heme, produces biliverdin, iron ions and carbon monoxide. HO-1 and their products exert beneficial effects through the protection against oxidative injury, regulation of apoptosis, modulation of inflammation as well as contribution to angiogenesis. On the other hand, the disturbances in the proper HO-1 level are associated with the pathogenesis of some age-dependent disorders, including neurodegeneration, cancer or macular degeneration. This review summarizes our knowledge about Nrf2 and HO-1 across different phyla suggesting their conservative role as stress-protective and anti-aging factors.

1,490 citations

Journal ArticleDOI
12 Aug 2005-Science
TL;DR: FLOWERING LOCUS T (FT) is a conserved promoter of flowering that acts downstream of various regulatory pathways, including one that mediates photoperiodic induction through CONSTANS (CO), and is expressed in the vasculature of cotyledons and leaves.
Abstract: FLOWERING LOCUS T (FT) is a conserved promoter of flowering that acts downstream of various regulatory pathways, including one that mediates photoperiodic induction through CONSTANS (CO), and is expressed in the vasculature of cotyledons and leaves. A bZIP transcription factor, FD, preferentially expressed in the shoot apex is required for FT to promote flowering. FD and FT are interdependent partners through protein interaction and act at the shoot apex to promote floral transition and to initiate floral development through transcriptional activation of a floral meristem identity gene, APETALA1 (AP1). FT may represent a long-distance signal in flowering.

1,344 citations

Journal ArticleDOI
22 Jul 2005-Science
TL;DR: It is shown that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle, which explains why plants gain advantage from circadian control.
Abstract: Circadian clocks are believed to confer an advantage to plants, but the nature of that advantage has been unknown. We show that a substantial photosynthetic advantage is conferred by correct matching of the circadian clock period with that of the external light-dark cycle. In wild type and in long- and short-circadian period mutants of Arabidopsis thaliana, plants with a clock period matched to the environment contain more chlorophyll, fix more carbon, grow faster, and survive better than plants with circadian periods differing from their environment. This explains why plants gain advantage from circadian control.

1,276 citations