scispace - formally typeset
Search or ask a question
Author

Marcia Regina von Zeska Kress

Other affiliations: University of Göttingen
Bio: Marcia Regina von Zeska Kress is an academic researcher from University of São Paulo. The author has contributed to research in topics: Cryptococcus neoformans & Cryptococcosis. The author has an hindex of 16, co-authored 33 publications receiving 945 citations. Previous affiliations of Marcia Regina von Zeska Kress include University of Göttingen.

Papers
More filters
Journal ArticleDOI
TL;DR: To increase the frequency of homologous recombination, the KU80 homologue in Aspergillus fumigatus was inactivated and deletion had no influence on pathogenicity in a low-dose murine infection model.
Abstract: To increase the frequency of homologous recombination, we inactivated the KU80 homologue in Aspergillus fumigatus (named akuBKU80). Homologous integration reached about 80% for both calcineurin A (calA) and polyketide synthase pksP (alb1) genes in the akuBKU80 mutant to 3 and 5%, respectively, when using a wild-type A. fumigatus strain. Deletion of akuBKU80 had no influence on pathogenicity in a low-dose murine infection model.

375 citations

Journal ArticleDOI
TL;DR: This work characterized an Aspergillus fumigatus CRZ1 homologue, CrzA and demonstrated its mediation of cellular tolerance to increased concentrations of calcium and manganese, and linked calcineurin activity with asexual developmental induction, finding that CrZA supports appropriate developmental induction in a calcineURin and brlA‐dependent manner in both species.
Abstract: The protein phosphatase calcineurin is an important mediator connecting calcium-dependent signalling to various cellular responses in multiple organisms. In fungi calcineurin acts largely through regulating Crz1p-like transcription factors. Here we characterize an Aspergillus fumigatus CRZ1 homologue, CrzA and demonstrate its mediation of cellular tolerance to increased concentrations of calcium and manganese. In addition to acute sensitivity to these ions, and decreased conidiation, the crzA null mutant suffers altered expression of calcium transporter mRNAs under high concentrations of calcium, and loss of virulence when compared with the corresponding complemented and wild-type strains. We use multiple expression analyses to probe the transcriptional basis of A. fumigatus calcium tolerance identifying several genes having calA and/or crzA dependent mRNA accumulation patterns. We also demonstrate that contrary to previous findings, the gene encoding the Aspergillus nidulans calcineurin subunit homologue, cnaA, is not essential and that the cnaA deletion mutant shares the morphological phenotypes observed in the corresponding A. fumigatus mutant, DeltacalA. Exploiting the A. nidulans model system, we have linked calcineurin activity with asexual developmental induction, finding that CrzA supports appropriate developmental induction in a calcineurin and brlA-dependent manner in both species.

151 citations

Journal ArticleDOI
TL;DR: The aspects involved in the complex interplay between the host immune response and the pathogen virulence factors are reviewed, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis.
Abstract: The interplay between Aspergillus fumigatus and the host immune response in lung infection has been subject of studies over the last years due to its importance in immunocompromised patients. The multifactorial virulence factors of A. fumigatus are related to the fungus biological characteristics, for example, structure, ability to grow and adapt to high temperatures and stress conditions, besides capability of evading the immune system and causing damage to the host. In this context, the fungus recognition by the host innate immunity occurs when the pathogen disrupts the natural and chemical barriers followed by the activation of acquired immunity. It seems clear that a Th1 response has a protective role, whereas Th2 reactions are often associated with higher fungal burden, and Th17 response is still controversial. Furthermore, a fine regulation of the effector immunity is required to avoid excessive tissue damage associated with fungal clearance, and this role could be attributed to regulatory T cells. Finally, in this work we reviewed the aspects involved in the complex interplay between the host immune response and the pathogen virulence factors, highlighting the immunological issues and the importance of its better understanding to the development of novel therapeutic approaches for invasive lung aspergillosis.

57 citations

Journal ArticleDOI
TL;DR: The results strongly indicate that MpkC and SakA have independent and collaborative functions during the transcriptional response to transient osmotic stress, which is a prerequisite for the survival and virulence strategies of the pathogen.
Abstract: Invasive aspergillosis is predominantly caused by Aspergillus fumigatus and adaptations to stresses experienced within the human host are a prerequisite for the survival and virulence strategies of the pathogen. The central signal transduction pathway operating during hyperosmotic stress is the High Osmolarity Glycerol mitogen-activated protein kinase (MAPK) cascade. A. fumigatus MpkC and SakA, orthologues of the Saccharomyces cerevisiae Hog1p, constitute the primary regulator of the hyperosmotic stress response. We compared A. fumigatus wild-type transcriptional response to osmotic stress with the ΔmpkC, ΔsakA, and ΔmpkC ΔsakA strains. Our results strongly indicate that MpkC and SakA have independent and collaborative functions during the transcriptional response to transient osmotic stress. We have identified and characterized null mutants for four A. fumigatus b-ZIP transcription factors. The atfA and atfB have comparable expression levels to the wild-type in ΔmpkC, but are repressed in ΔsakA and ΔmpkC ΔsakA post osmotic stress. The atfC and atfD have reduced expression levels in all mutants post osmotic stress. The atfA-D null mutants displayed several phenotypes related to osmotic, oxidative, and cell wall stresses. The ΔatfA and ΔatfB were shown to be avirulent and to have attenuated virulence, respectively, in both Galleria mellonella and a neutropenic murine model of invasive pulmonary aspergillosis

46 citations

Journal ArticleDOI
TL;DR: The findings indicate that LLLT was efficient on accelerating the development of newly formed bone probably by modulating the inflammatory and angiogenic gene expression as well as COX2 and VEGF immunoexpression during the initial phase of bone healing.
Abstract: The process of bone healing as well as the expression of inflammatory and angiogenic genes after low level laser therapy (LLLT) were investigated in an experimental model of bone defects. Sixty Wistar rats were distributed into control group and laser group (830nm, 30mW, 2,8J, 94seg). Histopathological analysis showed that LLLT was able to modulate the inflammatory process in the area of the bone defect and also to produce an earlier deposition of granulation tissue and newly formed bone tissue. Microarray analysis demonstrated that LLLT produced an up-regulation of the genes related to the inflammatory process (MMD, PTGIR, PTGS2, Ptger2, IL1, 1IL6, IL8, IL18) and the angiogenic genes (FGF14, FGF2, ANGPT2, ANGPT4 and PDGFD) at 36h and 3days, followed by the decrease of the gene expression on day 7. Immunohistochemical analysis revealed that the subjects that were treated presented a higher expression of COX-2 at 36h after surgery and an increased VEGF expression on days 3 and 7 after surgery. Our findings indicate that LLLT was efficient on accelerating the development of newly formed bone probably by modulating the inflammatory and angiogenic gene expression as well as COX2 and VEGF immunoexpression during the initial phase of bone healing.

46 citations


Cited by
More filters
01 Jun 2012
TL;DR: SPAdes as mentioned in this paper is a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler and on popular assemblers Velvet and SoapDeNovo (for multicell data).
Abstract: The lion's share of bacteria in various environments cannot be cloned in the laboratory and thus cannot be sequenced using existing technologies. A major goal of single-cell genomics is to complement gene-centric metagenomic data with whole-genome assemblies of uncultivated organisms. Assembly of single-cell data is challenging because of highly non-uniform read coverage as well as elevated levels of sequencing errors and chimeric reads. We describe SPAdes, a new assembler for both single-cell and standard (multicell) assembly, and demonstrate that it improves on the recently released E+V-SC assembler (specialized for single-cell data) and on popular assemblers Velvet and SoapDeNovo (for multicell data). SPAdes generates single-cell assemblies, providing information about genomes of uncultivatable bacteria that vastly exceeds what may be obtained via traditional metagenomics studies. SPAdes is available online ( http://bioinf.spbau.ru/spades ). It is distributed as open source software.

10,124 citations

01 Jan 2008
TL;DR: This work has identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism in Aspergillus nidulans, which inhibits sexual reproduction as well as secondary metabolism.
Abstract: Differentiation and secondary metabolism are correlated processes in fungi that respond to light. In Aspergillus nidulans , light inhibits sexual reproduction as well as secondary metabolism. We identified the heterotrimeric velvet complex VelB/VeA/LaeA connecting light-responding developmental regulation and control of secondary metabolism. VeA, which is primarily expressed in the dark, physically interacts with VelB, which is expressed during sexual development. VeA bridges VelB to the nuclear master regulator of secondary metabolism, LaeA. Deletion of either velB or veA results in defects in both sexual fruiting-body formation and the production of secondary metabolites.

627 citations

Journal ArticleDOI
TL;DR: The circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence are reviewed, which represent a minute fraction of fungal diversity.
Abstract: Pathogenic fungi have become a leading cause of human mortality due to the increasing frequency of fungal infections in immunocompromised populations and the limited armamentarium of clinically useful antifungal drugs. Candida albicans, Cryptococcus neoformans, and Aspergillus fumigatus are the leading causes of opportunistic fungal infections. In these diverse pathogenic fungi, complex signal transduction cascades are critical for sensing environmental changes and mediating appropriate cellular responses. For C. albicans, several environmental cues regulate a morphogenetic switch from yeast to filamentous growth, a reversible transition important for virulence. Many of the signaling cascades regulating morphogenesis are also required for cells to adapt and survive the cellular stresses imposed by antifungal drugs. Many of these signaling networks are conserved in C. neoformans and A. fumigatus, which undergo distinct morphogenetic programs during specific phases of their life cycles. Furthermore, the key mechanisms of fungal drug resistance, including alterations of the drug target, overexpression of drug efflux transporters, and alteration of cellular stress responses, are conserved between these species. This review focuses on the circuitry regulating fungal morphogenesis and drug resistance and the impact of these pathways on virulence. Although the three human-pathogenic fungi highlighted in this review are those most frequently encountered in the clinic, they represent a minute fraction of fungal diversity. Exploration of the conservation and divergence of core signal transduction pathways across C. albicans, C. neoformans, and A. fumigatus provides a foundation for the study of a broader diversity of pathogenic fungi and a platform for the development of new therapeutic strategies for fungal disease.

487 citations

Journal ArticleDOI
15 Jul 2015-PLOS ONE
TL;DR: A CRISPR-Cas9 based system adapted for use in filamentous fungi that performs RNA-guided mutagenesis in six species of which one has not previously been genetically engineered and demonstrates that the resulting strain can be used for iterative gene targeting.
Abstract: The number of fully sequenced fungal genomes is rapidly increasing. Since genetic tools are poorly developed for most filamentous fungi, it is currently difficult to employ genetic engineering for understanding the biology of these fungi and to fully exploit them industrially. For that reason there is a demand for developing versatile methods that can be used to genetically manipulate non-model filamentous fungi. To facilitate this, we have developed a CRISPR-Cas9 based system adapted for use in filamentous fungi. The system is simple and versatile, as RNA guided mutagenesis can be achieved by transforming a target fungus with a single plasmid. The system currently contains four CRISPR-Cas9 vectors, which are equipped with commonly used fungal markers allowing for selection in a broad range of fungi. Moreover, we have developed a script that allows identification of protospacers that target gene homologs in multiple species to facilitate introduction of common mutations in different filamentous fungi. With these tools we have performed RNA-guided mutagenesis in six species of which one has not previously been genetically engineered. Moreover, for a wild-type Aspergillus aculeatus strain, we have used our CRISPR Cas9 system to generate a strain that contains an AACU_pyrG marker and demonstrated that the resulting strain can be used for iterative gene targeting.

483 citations

Journal ArticleDOI
TL;DR: Only transformants which had incorporated the tandem repeat in the promoter of the cyp 51A gene and the L98H amino acid substitution exhibited similarly reduced patterns of susceptibility to all triazole agents and similarly increased levels of cyp51A expression, confirming that the combination of both alterations was responsible for the azole-resistant phenotype.
Abstract: Fourteen Aspergillus fumigatus clinical isolates that exhibited a pattern of reduced susceptibility to triazole drugs were analyzed. The sequences of the cyp51A gene from all isolates showed the presence of a point mutation at t364a, which led to the substitution of leucine 98 for histidine (L98H), together with the presence of two copies of a 34-bp sequence in tandem in the promoter of the cyp51A gene. Quantitative expression analysis (real-time PCR) showed up to an eightfold increase in the level of expression of the cyp51A gene compared to that by the susceptible strain. Three PCR fragments of one azole-resistant strain (strain CM2627) that included the promoter with the tandem repeat and part of cyp51A with the t364a mutation or PCR fragments with only one of the modifications were used to replace the cyp51A gene of an azole drug-susceptible A. fumigatus wild-type strain (strain CM237). Only transformants which had incorporated the tandem repeat in the promoter of the cyp51A gene and the L98H amino acid substitution exhibited similarly reduced patterns of susceptibility to all triazole agents and similarly increased levels of cyp51A expression, confirming that the combination of both alterations was responsible for the azole-resistant phenotype.

449 citations