scispace - formally typeset
Search or ask a question
Author

Marco Catucci

Bio: Marco Catucci is an academic researcher from University of Basel. The author has contributed to research in topics: T cell & Regeneration (biology). The author has an hindex of 1, co-authored 3 publications receiving 15 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: Evidence is provided that gene modification, in combination with the usage of 3D biomimetic scaffolds, may represent a novel approach allowing the use of postnatal TECs for thymic regeneration.
Abstract: Defective functionality of thymic epithelial cells (TECs), due to genetic mutations or injuring causes, results in altered T-cell development, leading to immunodeficiency or autoimmunity. These defects cannot be corrected by hematopoietic stem cell transplantation (HSCT), and thymus transplantation has not yet been demonstrated to be fully curative. Here, we provide proof of principle of a novel approach toward thymic regeneration, involving the generation of thymic organoids obtained by seeding gene-modified postnatal murine TECs into three-dimensional (3D) collagen type I scaffolds mimicking the thymic ultrastructure. To this end, freshly isolated TECs were transduced with a lentiviral vector system, allowing for doxycycline-induced Oct4 expression. Transient Oct4 expression promoted TECs expansion without drastically changing the cell lineage identity of adult TECs, which retain the expression of important molecules for thymus functionality such as Foxn1, Dll4, Dll1, and AIRE. Oct4-expressing TECs (iOCT4 TEC) were able to grow into 3D collagen type I scaffolds both in vitro and in vivo, demonstrating that the collagen structure reproduced a 3D environment similar to the thymic extracellular matrix, perfectly recognized by TECs. In vivo results showed that thymic organoids transplanted subcutaneously in athymic nude mice were vascularized but failed to support thymopoiesis because of their limited in vivo persistence. These findings provide evidence that gene modification, in combination with the usage of 3D biomimetic scaffolds, may represent a novel approach allowing the use of postnatal TECs for thymic regeneration. Stem Cells Translational Medicine 2019;8:1107-1122.

30 citations

Journal ArticleDOI
TL;DR: In this article, the authors highlight the beneficial effects of combining ACT with conventional chemo and/or radiotherapy, while originally classified as immunosuppressive, these methodologies can also promote the engraftment of ACT products, immunogenic cell death, and the reprogramming of more favorable microenvironments.

13 citations

Journal ArticleDOI
TL;DR: Data support feasibility and efficacy of combining hypo-fractionated local RT with ACT in the form of TCR engineered T cells to promote prostate cancer recognition and eradication.
Abstract: Background Adoptive T cell therapy (ACT) has become a promising option for cancer patients. While tumor-infiltrating lymphocytes were initially exploited as a source of tumor reactive lymphocytes, T cells genetically redirected to the tumor by TCR/CAR gene transfer are now in clinical validation. In the case of solid tumors, unfavorable immunosuppressive microenvironments remain recognized barriers to therapeutic efficacy. We have recently reported that the therapeutic activity of ACT against poorly immunogenic and indolent prostate cancer is improved by the concurrent targeting of the tumor stroma by mean of T cells redirected to an ubiquitously expressed minor histocompatibility antigen or a tumor vessel targeted TNF derivative. We have now taken the concept further and hypothesized that local radiotherapy (RT), might also synergize with ACT by promoting lymphocyte endothelial transmigration and tumor recognition, and ultimately favor abscopal effects. Methods We investigated the combination of local RT and ACT in TRAMP (Transgenic Adenocarcinoma of the Mouse Prostate) mice and in mice bearing subcutaneous B16/B16-OVA (MO4) or TRAMP-C2/TRAMP-C2-OVA tumors. Local RT was delivered by X-RAD SmART (the Small Animal Radiation Therapy) microirradiator in single dose or hypo-fractioned regimens. ACT consisted of T cells engineered with tumor-specific TCRs. Immunogenic consequences were analyzed by Real-Time PCR, and flow cytometry (FACS) analyses. Prostate tumor debulking was evaluated by histological analyses. Results We found that local hypofractionated RT and ACT, while individually inefficacious in controlling tumor growth, concurred to the debulking of advanced prostate adenocarcinoma when used in combination in treating TRAMP mice. Mechanistically, exposing isolated tumor cells, or the TRAMP mouse prostate to hypo-fractionated RT regimens induced stronger type-I interferon (IFN-I) responses, when compared to single high dose. Acutely, hypofractionated RT promoted better immune tumor infiltration, among which TCR redirected effector cells. Conclusions Data support feasibility and efficacy of combining hypo-fractionated local RT with ACT in the form of TCR engineered T cells to promote prostate cancer recognition and eradication. Tumor debulking was observed in the absence of treatment-related toxicity. Systemic recirculation of TCR redirected T cells was observed. We are now investigating therapeutic effects at distal (metastatic) sites. Acknowledgements The authors acknowledge the support of the Italian Association for Cancer Research (AIRC) Ethics Approval The studies involving animals were approved by The Institutional Ethical Committee (IACUC#999).

Cited by
More filters
Journal ArticleDOI
TL;DR: This Review focuses on the causes and consequences of impaired adaptive immunity and discusses therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation.
Abstract: Following periods of haematopoietic cell stress, such as after chemotherapy, radiotherapy, infection and transplantation, patient outcomes are linked to the degree of immune reconstitution, specifically of T cells. Delayed or defective recovery of the T cell pool has significant clinical consequences, including prolonged immunosuppression, poor vaccine responses and increased risks of infections and malignancies. Thus, strategies that restore thymic function and enhance T cell reconstitution can provide considerable benefit to individuals whose immune system has been decimated in various settings. In this Review, we focus on the causes and consequences of impaired adaptive immunity and discuss therapeutic strategies that can recover immune function, with a particular emphasis on approaches that can promote a diverse repertoire of T cells through de novo T cell formation. Reconstitution of the immune system after depletion by chemotherapy, radiotherapy, infection or transplantation is crucial to maintain protection from infection and to respond to immune-based therapy. Here the authors describe the ways in which a diverse T cell compartment can be restored, focusing on therapeutic strategies that drive the production of new T cells.

70 citations

Journal ArticleDOI
TL;DR: This review focuses on the progress and challenges of CAR-T cell therapy in hematological malignancies, such as attractive therapeutic targets,CAR-T related toxicities, and resistance to CAR- T cell therapy, and provides some practical recommendations.
Abstract: Chimeric antigen receptor T (CAR-T) cell therapy represents a major breakthrough in cancer treatment, and it has achieved unprecedented success in hematological malignancies, especially in relapsed/refractory (R/R) B cell malignancies. At present, CD19 and BCMA are the most common targets in CAR-T cell therapy, and numerous novel therapeutic targets are being explored. However, the adverse events related to CAR-T cell therapy might be serious or even life-threatening, such as cytokine release syndrome (CRS), CAR-T-cell-related encephalopathy syndrome (CRES), infections, cytopenia, and CRS-related coagulopathy. In addition, due to antigen escape, the limited CAR-T cell persistence, and immunosuppressive tumor microenvironment, a considerable proportion of patients relapse after CAR-T cell therapy. Thus, in this review, we focus on the progress and challenges of CAR-T cell therapy in hematological malignancies, such as attractive therapeutic targets, CAR-T related toxicities, and resistance to CAR-T cell therapy, and provide some practical recommendations.

28 citations

Journal ArticleDOI
TL;DR: In this article, the authors discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia, and discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymi stroma cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders.
Abstract: Inborn errors of thymic stromal cell development and function lead to impaired T-cell development resulting in a susceptibility to opportunistic infections and autoimmunity. In their most severe form, congenital athymia, these disorders are life-threatening if left untreated. Athymia is rare and is typically associated with complete DiGeorge syndrome, which has multiple genetic and environmental etiologies. It is also found in rare cases of T-cell lymphopenia due to Nude SCID and Otofaciocervical Syndrome type 2, or in the context of genetically undefined defects. This group of disorders cannot be corrected by hematopoietic stem cell transplantation, but upon timely recognition as thymic defects, can successfully be treated by thymus transplantation using cultured postnatal thymic tissue with the generation of naive T-cells showing a diverse repertoire. Mortality after this treatment usually occurs before immune reconstitution and is mainly associated with infections most often acquired pre-transplantation. In this review, we will discuss the current approaches to the diagnosis and management of thymic stromal cell defects, in particular those resulting in athymia. We will discuss the impact of the expanding implementation of newborn screening for T-cell lymphopenia, in combination with next generation sequencing, as well as the role of novel diagnostic tools distinguishing between hematopoietic and thymic stromal cell defects in facilitating the early consideration for thymus transplantation of an increasing number of patients and disorders. Immune reconstitution after the current treatment is usually incomplete with relatively common inflammatory and autoimmune complications, emphasizing the importance for improving strategies for thymus replacement therapy by optimizing the current use of postnatal thymus tissue and developing new approaches using engineered thymus tissue.

16 citations

Journal ArticleDOI
TL;DR: The relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells, and emerging techniques that have shown promise and the challenges that lie ahead are explored.
Abstract: The thymus plays a key role in adaptive immunity by generating a diverse population of T cells that defend the body against pathogens. Various factors from disease and toxic insults contribute to the degeneration of the thymus resulting in a fewer output of T cells. Consequently, the body is prone to a wide host of diseases and infections. In this review, first, the relevance of the thymus is discussed, followed by thymic embryological organogenesis and anatomy as well as the development and functionality of T cells. Attempts to regenerate the thymus include in vitro methods, such as forming thymic organoids aided by biofabrication techniques that are transplantable. Ex vivo methods that have shown promise in enhancing thymic regeneration are also discussed. Current regenerative technologies have not yet matched the complexity and functionality of the thymus. Therefore, emerging techniques that have shown promise and the challenges that lie ahead are explored.

13 citations

Journal ArticleDOI
TL;DR: In this paper, the authors discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymomic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering.
Abstract: As the thymus represents the primary site of T-cell development, optimal thymic function is of paramount importance for the successful reconstitution of the adaptive immunity after allogeneic hematopoietic stem cell transplantation. Thymus involutes as part of the aging process and several factors, including previous chemotherapy treatments, conditioning regimen used in preparation to the allograft, occurrence of graft-versus-host disease, and steroid therapy that impair the integrity of the thymus, thus affecting its role in supporting T-cell neogenesis. Although the pathways governing its regeneration are still poorly understood, the thymus has a remarkable capacity to recover its function after damage. Measurement of both recent thymic emigrants and T-cell receptor excision circles is valuable tools to assess thymic output and gain insights on its function. In this review, we will extensively discuss available data on factors regulating thymic function after allogeneic hematopoietic stem cell transplantation, as well as the strategies and therapeutic approaches under investigation to promote thymic reconstitution and accelerate immune recovery in transplanted patients, including the use of cytokines, sex-steroid ablation, precursor T-cells, and thymus bioengineering. Although none of them is routinely used in the clinic, these approaches have the potential to enhance thymic function and immune recovery, not only in patients given an allograft but also in other conditions characterized by immune deficiencies related to a defective function of the thymus.

12 citations