scispace - formally typeset
Search or ask a question
Author

Marco Ciotti

Other affiliations: Sapienza University of Rome
Bio: Marco Ciotti is an academic researcher from University of Rome Tor Vergata. The author has contributed to research in topics: Cervical cancer & Cervical intraepithelial neoplasia. The author has an hindex of 32, co-authored 160 publications receiving 3171 citations. Previous affiliations of Marco Ciotti include Sapienza University of Rome.


Papers
More filters
Journal ArticleDOI
TL;DR: The available therapies to fight CO VID-19, the development of vaccines, the role of artificial intelligence in the management of the pandemic and limiting the spread of the virus, the impact of the COVID-19 epidemic on the authors' lifestyle, and preparation for a possible second wave are provided.
Abstract: In December 2019, an outbreak of pneumonia of unknown origin was reported in Wuhan, Hubei Province, China. Pneumonia cases were epidemiologically linked to the Huanan Seafood Wholesale Market. Inoculation of respiratory samples into human airway epithelial cells, Vero E6 and Huh7 cell lines, led to the isolation of a novel respiratory virus whose genome analysis showed it to be a novel coronavirus related to SARS-CoV, and therefore named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 is a betacoronavirus belonging to the subgenus Sarbecovirus. The global spread of SARS-CoV-2 and the thousands of deaths caused by coronavirus disease (COVID-19) led the World Health Organization to declare a pandemic on 12 March 2020. To date, the world has paid a high toll in this pandemic in terms of human lives lost, economic repercussions and increased poverty. In this review, we provide information regarding the epidemiology, serological and molecular diagnosis, origin of SARS-CoV-2 and its ability to infect human cells, and safety issues. Then we focus on the available therapies to fight COVID-19, the development of vaccines, the role of artificial intelligence in the management of the pandemic and limiting the spread of the virus, the impact of the COVID-19 epidemic on our lifestyle, and preparation for a possible second wave.

494 citations

Journal ArticleDOI
TL;DR: This review summarizes the current knowledge about the epidemiology, phylogenesis, homology modeling, and molecular diagnostics of SARS-CoV-2 and concludes that Phylogenetic analysis is essential to understand viral evolution, whereas homology modeled is important for vaccine strategies and therapies.
Abstract: Background: In late December 2019, Chinese health authorities reported an outbreak of pneumonia of unknown origin in Wuhan, Hubei Province. Summary: A few days later, the genome of a novel coronavirus was released (http://viro­logical.org/t/novel-2019-coronavirus-genome/319; Wuhan-Hu-1, GenBank accession No. MN908947) and made publicly available to the scientific community. This novel coronavirus was provisionally named 2019-nCoV, now SARS-CoV-2 according to the Coronavirus Study Group of the International Committee on Taxonomy of Viruses. SARS-CoV-2 belongs to the Coronaviridae family, Betacoronavirus genus, subgenus Sarbecovirus. Since its discovery, the virus has spread globally, causing thousands of deaths and having an enormous impact on our health systems and economies. In this review, we summarize the current knowledge about the epidemiology, phylogenesis, homology modeling, and molecular diagnostics of SARS-CoV-2. Key Messages: Phylogenetic analysis is essential to understand viral evolution, whereas homology modeling is important for vaccine strategies and therapies. Highly sensitive and specific diagnostic assays are key to case identification, contact tracing, identification of the animal source, and implementation of control measures.

246 citations

Journal ArticleDOI
TL;DR: Subgroup analyses indicated that excess risks were most likely not due to clinical or biological factors, but to errors in study methods, and no association was found between cervical cancer and TP53 codon 72 polymorphism when the analysis was restricted to methodologically sound studies.
Abstract: Summary Background Cervical cancer is caused primarily by human papillomaviruses (HPV). The polymorphism rs1042522 at codon 72 of the TP53 tumour-suppressor gene has been investigated as a genetic cofactor. More than 80 studies were done between 1998 and 2006, after it was initially reported that women who are homozygous for the arginine allele had a risk for cervical cancer seven times higher than women who were heterozygous for the allele. However, results have been inconsistent. Here we analyse pooled data from 49 studies to determine whether there is an association between TP53 codon 72 polymorphism and cervical cancer. Methods Individual data on 7946 cases and 7888 controls from 49 different studies worldwide were reanalysed. Odds ratios (OR) were estimated using logistic regression, stratifying by study and ethnic origin. Subgroup analyses were done for infection with HPV, ethnic origin, Hardy–Weinberg equilibrium, study quality, and the material used to determine TP53 genotype. Findings The pooled estimates (OR) for invasive cervical cancer were 1·22 (95% CI 1·08–1·39) for arginine homozygotes compared with heterozygotes, and 1·13 (0·94–1·35) for arginine homozygotes versus proline homozygotes. Subgroup analyses showed significant excess risks only in studies where controls were not in Hardy–Weinberg equilibrium (1·71 [1·21–2·42] for arginine homozygotes compared with heterozygotes), in non-epidemiological studies (1·35 [1·15–1·58] for arginine homozygotes compared with heterozygotes), and in studies where TP53 genotype was determined from tumour tissue (1·39 [1·13–1·73] for arginine homozygotes compared with heterozygotes). Null results were noted in studies with sound epidemiological design and conduct (1·06 [0·87–1·29] for arginine homozygotes compared with heterozygotes), and studies in which TP53 genotype was determined from white blood cells (1·06 [0·87–1·29] for arginine homozygotes compared with heterozygotes). Interpretation Subgroup analyses indicated that excess risks were most likely not due to clinical or biological factors, but to errors in study methods. No association was found between cervical cancer and TP53 codon 72 polymorphism when the analysis was restricted to methodologically sound studies. Funding German Research Foundation (DFG).

139 citations

Journal ArticleDOI
TL;DR: It is demonstrated that HSV-1 rendered U937 monocytoid cells resistant to Fas-induced apoptosis promptly after infection, and NF-κB-dependent protection against Fas-mediated apoptosis was associated with decreased levels of caspase-8 activity and with the up-regulation of intracellular antiapoptotic proteins.

100 citations

Journal ArticleDOI
TL;DR: A positive correlation between neovascularity and macrophage counts is demonstrated, whereas iNOS expression displayed an inverse relationship with Macrophage density and tumor progression, which may modify the function of tumor-infiltrating macrophages toward a malignant phenotype.

98 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This AASLD 2018 Hepatitis B Guidance provides a data-supported approach to screening, prevention, diagnosis, and clinical management of patients with hepatitis B.

2,399 citations

Journal ArticleDOI
TL;DR: The final clinical practice guidelines and recommendations for the optimal management of chronic HBV infection are presented here, along with the relevant background information.
Abstract: Worldwide, some 240 million people have chronic hepatitis B virus (HBV), with the highest rates of infection in Africa and Asia. Our understanding of the natural history of HBV infection and the potential for therapy of the resultant disease is continuously improving. New data have become available since the previous APASL guidelines for management of HBV infection were published in 2012. The objective of this manuscript is to update the recommendations for the optimal management of chronic HBV infection. The 2015 guidelines were developed by a panel of Asian experts chosen by the APASL. The clinical practice guidelines are based on evidence from existing publications or, if evidence was unavailable, on the experts' personal experience and opinion after deliberations. Manuscripts and abstracts of important meetings published through January 2015 have been evaluated. This guideline covers the full spectrum of care of patients infected with hepatitis B, including new terminology, natural history, screening, vaccination, counseling, diagnosis, assessment of the stage of liver disease, the indications, timing, choice and duration of single or combination of antiviral drugs, screening for HCC, management in special situations like childhood, pregnancy, coinfections, renal impairment and pre- and post-liver transplant, and policy guidelines. However, areas of uncertainty still exist, and clinicians, patients, and public health authorities must therefore continue to make choices on the basis of the evolving evidence. The final clinical practice guidelines and recommendations are presented here, along with the relevant background information.

1,787 citations

Journal ArticleDOI
TL;DR: Modifiable risk factors, including tobacco smoking, occupational carcinogens, diet, and ionizing radiation are focused on, which can provide additional foundation for disease prevention.

1,549 citations

Journal ArticleDOI
TL;DR: A rapid and simple point‐of‐care lateral flow immunoassay that can detect immunoglobulin M (IgM) and IgG antibodies simultaneously against SARS‐CoV‐2 virus in human blood within 15 minutes which can detect patients at different infection stages is developed.
Abstract: The outbreak of the novel coronavirus disease (COVID-19) quickly spread all over China and to more than 20 other countries. Although the virus (severe acute respiratory syndrome coronavirus [SARS-Cov-2]) nucleic acid real-time polymerase chain reaction (PCR) test has become the standard method for diagnosis of SARS-CoV-2 infection, these real-time PCR test kits have many limitations. In addition, high false-negative rates were reported. There is an urgent need for an accurate and rapid test method to quickly identify a large number of infected patients and asymptomatic carriers to prevent virus transmission and assure timely treatment of patients. We have developed a rapid and simple point-of-care lateral flow immunoassay that can detect immunoglobulin M (IgM) and IgG antibodies simultaneously against SARS-CoV-2 virus in human blood within 15 minutes which can detect patients at different infection stages. With this test kit, we carried out clinical studies to validate its clinical efficacy uses. The clinical detection sensitivity and specificity of this test were measured using blood samples collected from 397 PCR confirmed COVID-19 patients and 128 negative patients at eight different clinical sites. The overall testing sensitivity was 88.66% and specificity was 90.63%. In addition, we evaluated clinical diagnosis results obtained from different types of venous and fingerstick blood samples. The results indicated great detection consistency among samples from fingerstick blood, serum and plasma of venous blood. The IgM-IgG combined assay has better utility and sensitivity compared with a single IgM or IgG test. It can be used for the rapid screening of SARS-CoV-2 carriers, symptomatic or asymptomatic, in hospitals, clinics, and test laboratories.

1,430 citations

Journal ArticleDOI
Ganna Chornokur, Hui-Yi Lin, Jonathan Tyrer1, Kate Lawrenson2  +155 moreInstitutions (51)
19 Jun 2015-PLOS ONE
TL;DR: Associations between inherited cellular transport gene variants and risk of EOC histologic subtypes are revealed on a large cohort of women.
Abstract: BACKGROUND: Defective cellular transport processes can lead to aberrant accumulation of trace elements, iron, small molecules and hormones in the cell, which in turn may promote the formation of reactive oxygen species, promoting DNA damage and aberrant expression of key regulatory cancer genes. As DNA damage and uncontrolled proliferation are hallmarks of cancer, including epithelial ovarian cancer (EOC), we hypothesized that inherited variation in the cellular transport genes contributes to EOC risk. METHODS: In total, DNA samples were obtained from 14,525 case subjects with invasive EOC and from 23,447 controls from 43 sites in the Ovarian Cancer Association Consortium (OCAC). Two hundred seventy nine SNPs, representing 131 genes, were genotyped using an Illumina Infinium iSelect BeadChip as part of the Collaborative Oncological Gene-environment Study (COGS). SNP analyses were conducted using unconditional logistic regression under a log-additive model, and the FDR q<0.2 was applied to adjust for multiple comparisons. RESULTS: The most significant evidence of an association for all invasive cancers combined and for the serous subtype was observed for SNP rs17216603 in the iron transporter gene HEPH (invasive: OR = 0.85, P = 0.00026; serous: OR = 0.81, P = 0.00020); this SNP was also associated with the borderline/low malignant potential (LMP) tumors (P = 0.021). Other genes significantly associated with EOC histological subtypes (p<0.05) included the UGT1A (endometrioid), SLC25A45 (mucinous), SLC39A11 (low malignant potential), and SERPINA7 (clear cell carcinoma). In addition, 1785 SNPs in six genes (HEPH, MGST1, SERPINA, SLC25A45, SLC39A11 and UGT1A) were imputed from the 1000 Genomes Project and examined for association with INV EOC in white-European subjects. The most significant imputed SNP was rs117729793 in SLC39A11 (per allele, OR = 2.55, 95% CI = 1.5-4.35, p = 5.66x10-4). CONCLUSION: These results, generated on a large cohort of women, revealed associations between inherited cellular transport gene variants and risk of EOC histologic subtypes.

1,100 citations