scispace - formally typeset
Search or ask a question
Author

Marco Ellero

Bio: Marco Ellero is an academic researcher from Basque Center for Applied Mathematics. The author has contributed to research in topics: Smoothed-particle hydrodynamics & Newtonian fluid. The author has an hindex of 21, co-authored 71 publications receiving 1502 citations. Previous affiliations of Marco Ellero include Technical University of Berlin & Ikerbasque.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a viscoelastic numerical scheme based on smoothed particle dynamics is presented, which goes a step beyond smoothed Particle Hydrodynamics (SPH) which is a grid-free Lagrangian method describing the flow by fluid-pseudo-particles.
Abstract: A viscoelastic numerical scheme based on smoothed particle dynamics is presented. The concept goes a step beyond smoothed particle hydrodynamics (SPH) which is a grid-free Lagrangian method describing the flow by fluid-pseudo-particles. The relevant properties are interpolated directly on the resulting movable grid. In this work, the effect of viscoelasticity is incorporated into the ordinary conservation laws by a differential constitutive equation supplied for the stress tensor. In order to give confidence in the methodology we explicitly consider the non-stationary simple corotational Maxwell model in a channel geometry. Without further developments the scheme is applicable to ‘realistic’ models relevant for three-dimensional (3D) viscoelastic flows in complex geometries.

117 citations

Journal ArticleDOI
TL;DR: A smoothed particle hydrodynamic model for incompressible fluids that uses the SHAKE methodology familiar in constrained molecular dynamics as an efficient method for finding the non-thermodynamic pressure satisfying the constraints.

116 citations

Journal ArticleDOI
TL;DR: SDPD is a version of the well-known smoothed particle hydrodynamics method, albeit with the proper inclusion of thermal fluctuations, and it is shown that SDPD produces the proper scaling of the fluctuations as the resolution of the simulation is varied.
Abstract: Dissipative particle dynamics (DPD) as a model of fluid particles suffers from the problem that it has no physical scale associated with the particles. Therefore, a DPD simulation requires an ambiguous fine-tuning of the model parameters with the physical parameters. A corrected version of DPD that does not suffer from this problem is smoothed dissipative particle dynamics (SDPD) [P. Espanol and M. Revenga, Phys. Rev. E 67, 026705 (2003)]. SDPD is, in fact, a version of the well-known smoothed particle hydrodynamics method, albeit with the proper inclusion of thermal fluctuations. Here, we show that SDPD produces the proper scaling of the fluctuations as the resolution of the simulation is varied. This is investigated in two problems: the Brownian motion of a spherical colloidal particle and a polymer molecule in suspension.

111 citations

Journal ArticleDOI
TL;DR: In this article, a numerical study on the transient flow of a viscoelastic fluid is presented, which is characterised by a travelling damped wave, which, if not accurately resolved, can lead to the rapid growth of small oscillations in time eventually causing divergence.
Abstract: A numerical study on the transient flow of a viscoelastic fluid is presented. The numerical framework is that of Smoothed Particle Hydrodynamics (SPH) already used by Ellero et al. in previous simulations of Non-Newtonian flows [J. Non-Newtonian Fluid. Mech. 105 (2002) 35–51]. In particular, the start-up flow between parallel plates is simulated for an Oldroyd-B and UCM fluid at low Reynolds number. Results for a Newtonian fluid are also shown for comparison. The numerical results are presented and compared with available theoretical solutions, showing a very good agreement. In particular, the simulations of an Oldroyd-B fluid have been found to be stable and accurate for a wide range of the Weissenberg number. In the case of a UCM fluid, the absence of a viscous term in the momentum equation makes its numerical modelling harder. Namely, the process is characterised by a travelling damped wave, which, if not accurately resolved, can lead to the rapid growth of small oscillations in time eventually causing divergence. On the other hand, if specifically dealing with transient flow problems, stabilising techniques such as BSD, EVSS or AVSS can not be used either; whenever used in conjunction with decoupled solution algorithms, they give an excessive oversmoothing in the results which deteriorates the final accuracy. In this work, we consider an exact SPH discretisation of the hyperbolic equation characterising the UCM model. SPH simulations are finally performed for different Weissenberg numbers showing very promising results. Finally, a discussion on the SPH treatment of the boundary conditions for general hydrodynamics problems is also outlined following the approach of ‘SPH boundary particles’ introduced by Morris for the simulations of low Reynolds number flows.

102 citations

Journal ArticleDOI
TL;DR: In this article, the authors apply smoothed dissipative particle dynamics (SDPD) to model solid particles in suspension, which is a thermodynamically consistent version of smoothed particle hydrodynamics.
Abstract: We apply smoothed dissipative particle dynamics (SDPD) [Espanol and Revenga, Phys. Rev. E 67, 026705 (2003)] to model solid particles in suspension. SDPD is a thermodynamically consistent version of smoothed particle hydrodynamics (SPH) and can be interpreted as a multiscale particle framework linking the macroscopic SPH to the mesoscopic dissipative particle dynamics (DPD) method. Rigid structures of arbitrary shape embedded in the fluid are modeled by frozen particles on which artificial velocities are assigned in order to satisfy exactly the no-slip boundary condition on the solid-liquid interface. The dynamics of the rigid structures is decoupled from the solvent by solving extra equations for the rigid body translational/angular velocities derived from the total drag/torque exerted by the surrounding liquid. The correct scaling of the SDPD thermal fluctuations with the fluid-particle size allows us to describe the behavior of the particle suspension on spatial scales ranging continuously from the dif...

94 citations


Cited by
More filters
01 May 1993
TL;DR: Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems.
Abstract: Three parallel algorithms for classical molecular dynamics are presented. The first assigns each processor a fixed subset of atoms; the second assigns each a fixed subset of inter-atomic forces to compute; the third assigns each a fixed spatial region. The algorithms are suitable for molecular dynamics models which can be difficult to parallelize efficiently—those with short-range forces where the neighbors of each atom change rapidly. They can be implemented on any distributed-memory parallel machine which allows for message-passing of data between independently executing processors. The algorithms are tested on a standard Lennard-Jones benchmark problem for system sizes ranging from 500 to 100,000,000 atoms on several parallel supercomputers--the nCUBE 2, Intel iPSC/860 and Paragon, and Cray T3D. Comparing the results to the fastest reported vectorized Cray Y-MP and C90 algorithm shows that the current generation of parallel machines is competitive with conventional vector supercomputers even for small problems. For large problems, the spatial algorithm achieves parallel efficiencies of 90% and a 1840-node Intel Paragon performs up to 165 faster than a single Cray C9O processor. Trade-offs between the three algorithms and guidelines for adapting them to more complex molecular dynamics simulations are also discussed.

29,323 citations

Journal ArticleDOI
TL;DR: In this article, the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed, focusing on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.
Abstract: In this review the theory and application of Smoothed particle hydrodynamics (SPH) since its inception in 1977 are discussed. Emphasis is placed on the strengths and weaknesses, the analogy with particle dynamics and the numerous areas where SPH has been successfully applied.

4,070 citations

01 Jan 2006
TL;DR: The mysterious rattleback and its fluid counterpart:Developments in shear instabilities(Patrick Huerre,Falling clouds+Elisabeth Guazzelli)LEcotectural fluid mechanics%Herbert Huppert )
Abstract: 流体力学杂志“Journal of Fluid Mechanics”由剑桥大学教授George Batchelor在1956年5月创办,在国际流体力学界享有很高的学术声望,被公认为是流体力学最著名的学术刊物之一,2005年的影响因子为2.061,雄居同类期刊之首.在它创刊50周年之际,2006年5月JFM出版了第554卷的纪念特刊,其中刊登了现任主编(美国西北大学S.H.Davis教授和英国剑桥大学T.J.Pedley教授)合写的述评:“Editorial:JFM at50”,以JFM为背景,从独特的视角对近50年来流体力学的发展进行了简明的回顾和展望,并归纳了一系列非常有启发性的有趣统计数字.2006年7月21日在剑桥大学应用数学和理论物理研究所(DAMTP)举行了创刊50周年的庆祝会.下午2点,JFM的新老编辑和来宾会聚一堂,Pedley教授致开幕词,其后是5个精彩的报告:The mysterious rattleback and its fluid counterpart(Keith Moffatt),Developments in shear instabilities(Patrick Huerre),Falling clouds(Elisabeth Guazzelli),Ecotectural fluid mechanics(Paul Linden),The success of JFM(Herbert Huppert),最后由Davis教授致闭幕词.

767 citations

Journal ArticleDOI
TL;DR: A new divergence-free ISPH approach is proposed here which maintains accuracy and stability while remaining mesh free without increasing computational cost by slightly shifting particles away from streamlines, although the necessary interpolation of hydrodynamic characteristics means the formulation ceases to be strictly conservative.

572 citations

Journal ArticleDOI
TL;DR: The algorithm is based upon Fick's law of diffusion and shifts particles in a manner that prevents highly anisotropic distributions and the onset of numerical instability, and is validated against analytical solutions for an internal flow at higher Reynolds numbers than previously.

513 citations