scispace - formally typeset
Search or ask a question
Author

Marco Formentin

Bio: Marco Formentin is an academic researcher from University of Padua. The author has contributed to research in topics: Population & Ising model. The author has an hindex of 10, co-authored 29 publications receiving 252 citations. Previous affiliations of Marco Formentin include Ruhr University Bochum & Academy of Sciences of the Czech Republic.

Papers
More filters
Journal ArticleDOI
TL;DR: This study shows that limited sampling hinders the anticipation of such transitions and provides estimates for the number of samples required to reveal early warning signals of abrupt biotic change and derives a generalized TL in terms of sample and population exponents bjk for the scaling of the kth vs. the jth cumulants.
Abstract: has been verified extensively in ecology, where it applies to population abundance, physics, and other natural sciences. Its ubiquitous empirical verification suggests a context-independent mechanism. Sample exponents b measured empirically via the scaling of sample mean and variance typically cluster around the value b=2. Some theoretical models of population growth, however, predict a broad range of values for the population exponent b pertaining to the mean and variance of population density, depending on details of the growth process. Is the widely reported sample exponent b ≃2 the result of ecological processes or could it be a statistical artifact? Here, we apply large deviations theory and finite-sample arguments to show exactly that in a broad class of growth models the sample exponent is b ≃2 regardless of the underlying population exponent. We derive a generalized TL in terms of sample and population exponents bjk for the scaling of the kth vs. the jth cumulants. The sample exponent bjk depends predictably on the number of samples and for finite samples we obtain bjk ≃k=j asymptotically in time, a prediction that we verify in two empirical examples. Thus, the sample exponent b ≃2 may indeed be a statistical artifact and not dependent on population dynamics under conditions that we specify exactly. Given the broad class of models investigated, our results apply to many fields where TL is used although inadequately understood.

67 citations

Journal ArticleDOI
TL;DR: An analytical framework that provides robust and accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests performed on both in silico–generated and real forests, and shows that the approach outperforms other methods.
Abstract: The quantification of tropical tree biodiversity worldwide remains an open and challenging problem. More than two-fifths of the number of worldwide trees can be found either in tropical or in subtropical forests, but only ≈0.000067% of species identities are known. We introduce an analytical framework that provides robust and accurate estimates of species richness and abundances in biodiversity-rich ecosystems, as confirmed by tests performed on both in silico–generated and real forests. Our analysis shows that the approach outperforms other methods. In particular, we find that upscaling methods based on the log-series species distribution systematically overestimate the number of species and abundances of the rare species. We finally apply our new framework on 15 empirical tropical forest plots and quantify the minimum percentage cover that should be sampled to achieve a given average confidence interval in the upscaled estimate of biodiversity. Our theoretical framework confirms that the forests studied are comprised of a large number of rare or hyper-rare species. This is a signature of critical-like behavior of species-rich ecosystems and can provide a buffer against extinction.

32 citations

Posted Content
TL;DR: The theoretical approach shows that appropriate models of mediated cooperation naturally lead to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.
Abstract: Empirical observations show that ecological communities can have a huge number of coexisting species, also with few or limited number of resources. These ecosystems are characterized by multiple type of interactions, in particular displaying cooperative behaviors. However, standard modeling of population dynamics based on Lotka-Volterra type of equations predicts that ecosystem stability should decrease as the number of species in the community increases and that cooperative systems are less stable than communities with only competitive and/or exploitative interactions. Here we propose a stochastic model of population dynamics, which includes exploitative interactions as well as cooperative interactions induced by cross-feeding. The model is exactly solved and we obtain results for relevant macro-ecological patterns, such as species abundance distributions and correlation functions. In the large system size limit, any number of species can coexist for a very general class of interaction networks and stability increases as the number of species grows. For pure mutualistic/commensalistic interactions we determine the topological properties of the network that guarantee species coexistence. We also show that the stationary state is globally stable and that inferring species interactions through species abundance correlation analysis may be misleading. Our theoretical approach thus show that appropriate models of cooperation naturally leads to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.

31 citations

Journal ArticleDOI
TL;DR: It is shown that the system may undergo a transition from a disordered phase, where the magnetization of each population fluctuates closely around zero, to a phase in which they both display a macroscopic regular rhythm.
Abstract: Many real systems composed of a large number of interacting components, as, for instance, neural networks, may exhibit collective periodic behavior even though single components have no natural tendency to behave periodically. Macroscopic oscillations are indeed one of the most common self-organized behavior observed in living systems. In the present paper we study some dynamical features of a two-population generalization of the mean-field Ising model with the scope of investigating simple mechanisms capable to generate rhythms in large groups of interacting individuals. We show that the system may undergo a transition from a disordered phase, where the magnetization of each population fluctuates closely around zero, to a phase in which they both display a macroscopic regular rhythm. In particular, there exists a region in the parameter space where having two groups of spins with inter- and intrapopulation interactions of different strengths suffices for the emergence of a robust periodic behavior.

29 citations

Journal ArticleDOI
TL;DR: In this article, the authors proposed a model for population dynamics, which also includes indirect cooperative interactions mediated by other species (e.g., habitat modification) and showed that in the large system size limit, any number of species can coexist and stability increases as the number of groups grows, even in presence of exploitative or harmful interactions.
Abstract: Empirical evidences show that ecosystems with high biodiversity can persist in time even in the presence of few types of resources and are more stable than low biodiverse communities. This evidence is contrasted by the conventional mathematical modeling, which predicts that the presence of many species and/or cooperative interactions are detrimental for ecological stability and persistence. Here we propose a modelling framework for population dynamics, which also include indirect cooperative interactions mediated by other species (e.g. habitat modification). We show that in the large system size limit, any number of species can coexist and stability increases as the number of species grows, if mediated cooperation is present, even in presence of exploitative or harmful interactions (e.g. antibiotics). Our theoretical approach thus shows that appropriate models of mediated cooperation naturally lead to a solution of the long-standing question about complexity-stability paradox and on how highly biodiverse communities can coexist.

18 citations


Cited by
More filters
Book ChapterDOI
01 Jan 2011
TL;DR: Weakconvergence methods in metric spaces were studied in this article, with applications sufficient to show their power and utility, and the results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables.
Abstract: The author's preface gives an outline: "This book is about weakconvergence methods in metric spaces, with applications sufficient to show their power and utility. The Introduction motivates the definitions and indicates how the theory will yield solutions to problems arising outside it. Chapter 1 sets out the basic general theorems, which are then specialized in Chapter 2 to the space C[0, l ] of continuous functions on the unit interval and in Chapter 3 to the space D [0, 1 ] of functions with discontinuities of the first kind. The results of the first three chapters are used in Chapter 4 to derive a variety of limit theorems for dependent sequences of random variables. " The book develops and expands on Donsker's 1951 and 1952 papers on the invariance principle and empirical distributions. The basic random variables remain real-valued although, of course, measures on C[0, l ] and D[0, l ] are vitally used. Within this framework, there are various possibilities for a different and apparently better treatment of the material. More of the general theory of weak convergence of probabilities on separable metric spaces would be useful. Metrizability of the convergence is not brought up until late in the Appendix. The close relation of the Prokhorov metric and a metric for convergence in probability is (hence) not mentioned (see V. Strassen, Ann. Math. Statist. 36 (1965), 423-439; the reviewer, ibid. 39 (1968), 1563-1572). This relation would illuminate and organize such results as Theorems 4.1, 4.2 and 4.4 which give isolated, ad hoc connections between weak convergence of measures and nearness in probability. In the middle of p. 16, it should be noted that C*(S) consists of signed measures which need only be finitely additive if 5 is not compact. On p. 239, where the author twice speaks of separable subsets having nonmeasurable cardinal, he means "discrete" rather than "separable." Theorem 1.4 is Ulam's theorem that a Borel probability on a complete separable metric space is tight. Theorem 1 of Appendix 3 weakens completeness to topological completeness. After mentioning that probabilities on the rationals are tight, the author says it is an

3,554 citations

Book
01 Jan 1991
TL;DR: In this paper, the Third Edition of the Third edition of Linear Systems: Local Theory and Nonlinear Systems: Global Theory (LTLT) is presented, along with an extended version of the second edition.
Abstract: Series Preface * Preface to the Third Edition * 1 Linear Systems * 2 Nonlinear Systems: Local Theory * 3 Nonlinear Systems: Global Theory * 4 Nonlinear Systems: Bifurcation Theory * References * Index

1,977 citations

BookDOI
18 Jan 2021

638 citations

Journal ArticleDOI
TL;DR: The scientific books will also be the best reason to choose, especially for the students, teachers, doctors, businessman, and other professions who are fond of reading.
Abstract: In what case do you like reading so much? What about the type of the complex population dynamics a theoretical empirical synthesis book? The needs to read? Well, everybody has their own reason why should read some books. Mostly, it will relate to their necessity to get knowledge from the book and want to read just to get entertainment. Novels, story book, and other entertaining books become so popular this day. Besides, the scientific books will also be the best reason to choose, especially for the students, teachers, doctors, businessman, and other professions who are fond of reading.

627 citations

Journal ArticleDOI
TL;DR: The basic theory of Markov chain Monte Carlo (MCMC) simulation is reviewed and a MATLAB toolbox of the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm developed by Vrugt et al. is introduced, used for Bayesian inference in fields ranging from physics, chemistry and engineering, to ecology, hydrology, and geophysics.
Abstract: Bayesian inference has found widespread application and use in science and engineering to reconcile Earth system models with data, including prediction in space (interpolation), prediction in time (forecasting), assimilation of observations and deterministic/stochastic model output, and inference of the model parameters. Bayes theorem states that the posterior probability, p ( H | Y ˜ ) of a hypothesis, H is proportional to the product of the prior probability, p(H) of this hypothesis and the likelihood, L ( H | Y ˜ ) of the same hypothesis given the new observations, Y ˜ , or p ( H | Y ˜ ) ∝ p ( H ) L ( H | Y ˜ ) . In science and engineering, H often constitutes some numerical model, ℱ(x) which summarizes, in algebraic and differential equations, state variables and fluxes, all knowledge of the system of interest, and the unknown parameter values, x are subject to inference using the data Y ˜ . Unfortunately, for complex system models the posterior distribution is often high dimensional and analytically intractable, and sampling methods are required to approximate the target. In this paper I review the basic theory of Markov chain Monte Carlo (MCMC) simulation and introduce a MATLAB toolbox of the DiffeRential Evolution Adaptive Metropolis (DREAM) algorithm developed by Vrugt et al. (2008a, 2009a) and used for Bayesian inference in fields ranging from physics, chemistry and engineering, to ecology, hydrology, and geophysics. This MATLAB toolbox provides scientists and engineers with an arsenal of options and utilities to solve posterior sampling problems involving (among others) bimodality, high-dimensionality, summary statistics, bounded parameter spaces, dynamic simulation models, formal/informal likelihood functions (GLUE), diagnostic model evaluation, data assimilation, Bayesian model averaging, distributed computation, and informative/noninformative prior distributions. The DREAM toolbox supports parallel computing and includes tools for convergence analysis of the sampled chain trajectories and post-processing of the results. Seven different case studies illustrate the main capabilities and functionalities of the MATLAB toolbox.

521 citations