scispace - formally typeset
Search or ask a question
Author

Marco Guglielmi

Bio: Marco Guglielmi is an academic researcher from Polytechnic University of Valencia. The author has contributed to research in topics: Waveguide filter & Filter (video). The author has an hindex of 28, co-authored 234 publications receiving 3478 citations. Previous affiliations of Marco Guglielmi include University of Valencia & European Space Research and Technology Centre.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, a parallel-coupled-line microstrip bandpass filter with suppressed spurious passband is presented, where the wave impedance is modulated so that the harmonic passband of the filter is rejected while the desired passband response is maintained virtually unaltered.
Abstract: In this paper, we present a new parallel-coupled-line microstrip bandpass filter with suppressed spurious passband. Using a continuous perturbation of the width of the coupled lines following a sinusoidal law, the wave impedance is modulated so that the harmonic passband of the filter is rejected while the desired passband response is maintained virtually unaltered. This strip-width perturbation does not require the filter parameters to be recalculated and, this way, the classical design methodology for coupled-line microstrip filters can still be used. At the same time, the fabrication of the resulting filter layout does not involve more difficulties than those for typical coupled-line microstrip filters. To test this novel technique, 3rd-order Butterworth bandpass filters have been designed at 2.5 GHz, with a 10% fractional bandwidth and different values of the perturbation amplitude. It is shown that for a 47.5 % sinusoidal variation of the nominal strip width, a harmonic rejection of more than 40 dB is achieved in measurement while the passband at 2.5 GHz is almost unaltered.

279 citations

Journal ArticleDOI
TL;DR: In this article, a new family of dual-mode filters based on the use of simple inductive discontinuities in a rectangular waveguide environment is described. But the proposed filter structure can be analyzed and optimized very efficiently using multimode equivalent network representations, thus leading to a simple and rapid development procedure.
Abstract: In this paper, we describe a new family of dual-mode filters that is based on the use of simple inductive discontinuities in a rectangular waveguide environment. The proposed filter structure can be analyzed and optimized very efficiently using multimode equivalent network representations, thus leading to a simple and rapid development procedure. In addition to theory, the measured performance of a number of filter structures is also presented, thereby fully validating the proposed filter concept.

173 citations

Journal ArticleDOI
TL;DR: In this paper, a double-strip grating leaky-wave antenna consisting of two strips per unit cell is analyzed, and an approximate design rule is discussed to achieve the minimum possible variation in attenuation as the beam is scanned through broadside.
Abstract: A double-strip grating leaky-wave antenna consisting of two strips per unit cell is analyzed. The stopband behavior exhibited at broadside scan in the single-strip grating antenna is characteristic of all periodic leaky-wave antennas having a single strip per unit cell, and results in a drastic increase in the attenuation rate of the leaky wave as the beam is scanned to broadside. By nearly eliminating this stopband behavior, the double-strip leaky-wave antenna can scan from backward end fire to forward end fire without any large frequency regions of high attenuation. An approximate design rule for the double-strip antenna is discussed, and results are presented to show how the antenna may be further optimized to achieve the minimum possible variation in attenuation as the beam is scanned through broadside. Although the stopband behavior is never completely eliminated with the addition of the extra strip, the optimum design shows an almost negligible region of rapidly varying attenuation near broadside. >

155 citations

Book
01 Sep 1999
TL;DR: In this article, the authors comprehensively cover modal analysis of waveguides and cavities; discuss several multi-mode procedures for the study of both basic and arbitarily shaped waveguide junctions and describe specific applications such as inductively coupled filters, waveguide couplers, metal insert and dual-mode filters.
Abstract: From the Publisher: This book describes in detail a number of modern multi-modal techniques for the analysis and design of passive microwave components. The authors comprehensively cover modal analysis of waveguides and cavities; discuss several multi-mode procedures for the study of both basic and arbitarily shaped waveguide junctions and, finally, describe specific applications such as inductively coupled filters, waveguide couplers, metal insert and dual-mode filters. The book will be of interest to professional engineers and researchers in the microwave engineering field as well as students engaged in research at an advanced level.

151 citations

Journal ArticleDOI
TL;DR: In this paper, a method to achieve the rejection of multiple spurious passbands in parallel-coupled-line microstrip bandpass filters is proposed, using a continuous perturbation of the width of the coupled-lines following a sinusoidal law, which can be modulated so that the first undesired harmonic passband of the filter is rejected, while the desired passband is maintained virtually unaltered.
Abstract: A method to achieve the rejection of multiple spurious passbands in parallel-coupled-line microstrip bandpass filters is proposed. As it was previously demonstrated by the authors, using a continuous perturbation of the width of the coupled-lines following a sinusoidal law, the wave impedance can be modulated so that the first undesired harmonic passband of the filter is rejected, while the desired passband is maintained virtually unaltered. In this letter, the scope of the method is extended to reject multiple spurious passbands by employing different periods in each coupled-line section tuned to the different bands to be rejected. Simulated and measured data show that for an order-seven bandpass filter prototype, a rejection level exceeding 30 dB is obtained in the first four spurious passbands, while the desired pass-band is kept almost unaltered.

115 citations


Cited by
More filters
Book
01 Jan 2001
TL;DR: In this paper, the authors present a general framework for coupling matrix for Coupled Resonator Filters with short-circuited Stubs (UWB) and Cascaded Quadruplet (CQ) filters.
Abstract: Preface to the Second Edition. Preface to the First Edition. 1 Introduction. 2 Network Analysis. 2.1 Network Variables. 2.2 Scattering Parameters. 2.3 Short-Circuit Admittance Parameters. 2.4 Open-Circuit Impedance Parameters. 2.5 ABCD Parameters. 2.6 Transmission-Line Networks. 2.7 Network Connections. 2.8 Network Parameter Conversions. 2.9 Symmetrical Network Analysis. 2.10 Multiport Networks. 2.11 Equivalent and Dual Network. 2.12 Multimode Networks. 3 Basic Concepts and Theories of Filters. 3.1 Transfer Functions. 3.2 Lowpass Prototype Filters and Elements. 3.3 Frequency and Element Transformations. 3.4 Immittance Inverters. 3.5 Richards' Transformation and Kuroda Identities. 3.6 Dissipation and Unloaded Quality Factor. 4 Transmission Lines and Components. 4.1 Microstrip Lines. 4.2 Coupled Lines. 4.3 Discontinuities and Components. 4.4 Other Types of Microstrip Lines. 4.5 Coplanar Waveguide (CPW). 4.6 Slotlines. 5 Lowpass and Bandpass Filters. 5.1 Lowpass Filters. 5.2 Bandpass Filters. 6 Highpass and Bandstop Filters. 6.1 Highpass Filters. 6.2 Bandstop Filters. 7 Coupled-Resonator Circuits. 7.1 General Coupling Matrix for Coupled-Resonator Filters. 7.2 General Theory of Couplings. 7.3 General Formulation for Extracting Coupling Coefficient k. 7.4 Formulation for Extracting External Quality Factor Qe. 7.5 Numerical Examples. 7.6 General Coupling Matrix Including Source and Load. 8 CAD for Low-Cost and High-Volume Production. 8.1 Computer-Aided Design (CAD) Tools. 8.2 Computer-Aided Analysis (CAA). 8.3 Filter Synthesis by Optimization. 8.4 CAD Examples. 9 Advanced RF/Microwave Filters. 9.1 Selective Filters with a Single Pair of Transmission Zeros. 9.2 Cascaded Quadruplet (CQ) Filters. 9.3 Trisection and Cascaded Trisection (CT) Filters. 9.4 Advanced Filters with Transmission-Line Inserted Inverters. 9.5 Linear-Phase Filters. 9.6 Extracted Pole Filters. 9.7 Canonical Filters. 9.8 Multiband Filters. 10 Compact Filters and Filter Miniaturization. 10.1 Miniature Open-Loop and Hairpin Resonator Filters. 10.2 Slow-Wave Resonator Filters. 10.3 Miniature Dual-Mode Resonator Filters. 10.4 Lumped-Element Filters. 10.5 Miniature Filters Using High Dielectric-Constant Substrates. 10.6 Multilayer Filters. 11 Superconducting Filters. 11.1 High-Temperature Superconducting (HTS) Materials. 11.2 HTS Filters for Mobile Communications. 11.3 HTS Filters for Satellite Communications. 11.4 HTS Filters for Radio Astronomy and Radar. 11.5 High-Power HTS Filters. 11.6 Cryogenic Package. 12 Ultra-Wideband (UWB) Filters. 12.1 UWB Filters with Short-Circuited Stubs. 12.2 UWB-Coupled Resonator Filters. 12.3 Quasilumped Element UWB Filters. 12.4 UWB Filters Using Cascaded Miniature High- And Lowpass Filters. 12.5 UWB Filters with Notch Band(s). 13 Tunable and Reconfigurable Filters. 13.1 Tunable Combline Filters. 13.2 Tunable Open-Loop Filters without Via-Hole Grounding. 13.3 Reconfigurable Dual-Mode Bandpass Filters. 13.4 Wideband Filters with Reconfigurable Bandwidth. 13.5 Reconfigurable UWB Filters. 13.6 RF MEMS Reconfigurable Filters. 13.7 Piezoelectric Transducer Tunable Filters. 13.8 Ferroelectric Tunable Filters. Appendix: Useful Constants and Data. A.1 Physical Constants. A.2 Conductivity of Metals at 25 C (298K). A.3 Electical Resistivity rho in 10-8 m of Metals. A.4 Properties of Dielectric Substrates. Index.

4,774 citations

Journal ArticleDOI
TL;DR: In this paper, the fundamental electromagnetic properties of left-handed metamaterials and the physical realization of these materials are reviewed based on a general transmission line (TL) approach.
Abstract: Metamaterials are artificial structures that can be designed to exhibit specific electromagnetic properties not commonly found in nature. Recently, metamaterials with simultaneously negative permittivity (/spl epsiv/) and permeability (/spl mu/), more commonly referred to as left-handed (LH) materials, have received substantial attention in the scientific and engineering communities. The unique properties of LHMs have allowed novel applications, concepts, and devices to be developed. In this article, the fundamental electromagnetic properties of LHMs and the physical realization of these materials are reviewed based on a general transmission line (TL) approach. The general TL approach provides insight into the physical phenomena of LHMs and provides an efficient design tool for LH applications. LHMs are considered to be a more general model of composite right/left hand (CRLH) structures, which also include right-handed (RH) effects that occur naturally in practical LHMs. Characterization, design, and implementation of one-dimensional and two-dimensional CRLH TLs are examined. In addition, microwave devices based on CRLH TLs and their applications are presented.

1,285 citations

Journal ArticleDOI
23 Mar 2012
TL;DR: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs), a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure.
Abstract: This paper gives a basic review and a summary of recent developments for leaky-wave antennas (LWAs). An LWA uses a guiding structure that supports wave propagation along the length of the structure, with the wave radiating or “leaking” continuously along the structure. Such antennas may be uniform, quasi-uniform, or periodic. After reviewing the basic physics and operating principles, a summary of some recent advances for these types of structures is given. Recent advances include structures that can scan to endfire, structures that can scan through broadside, structures that are conformal to surfaces, and structures that incorporate power recycling or include active elements. Some of these novel structures are inspired by recent advances in the metamaterials area.

988 citations

OtherDOI
13 Aug 2008
TL;DR: In this paper, an introduction history classification of leaky wave antennas is presented, along with a detailed discussion of the physics of Leaky Waves Radiation properties of one-dimensional and two-dimensional Leaky wave antenna.
Abstract: This chapter contains sections titled: Introduction History Classification of Leaky‐Wave Antennas Physics of Leaky Waves Radiation Properties of One‐Dimensional Leaky‐Wave Antennas Radiation Properties of Two‐Dimensional Leaky‐Wave Antennas Conclusions Acknowledgment References

792 citations

Journal ArticleDOI
TL;DR: In this paper, a compact representation of the electric and magnetic-type dyadic Green's functions for plane-stratified, multilayered, uniaxial media based on the transmission-line network analog along the aids normal to the stratification is given.
Abstract: A compact representation is given of the electric- and magnetic-type dyadic Green's functions for plane-stratified, multilayered, uniaxial media based on the transmission-line network analog along the aids normal to the stratification. Furthermore, mixed-potential integral equations are derived within the framework of this transmission-line formalism for arbitrarily shaped, conducting or penetrable objects embedded in the multilayered medium. The development emphasizes laterally unbounded environments, but an extension to the case of a medium enclosed by a rectangular shield is also included.

774 citations