scispace - formally typeset
Search or ask a question
Author

Marco Indaco

Bio: Marco Indaco is an academic researcher from Polytechnic University of Turin. The author has contributed to research in topics: Magnetoresistive random-access memory & NAND gate. The author has an hindex of 12, co-authored 39 publications receiving 396 citations.

Papers
More filters
Proceedings ArticleDOI
27 May 2013
TL;DR: In this paper a fully comprehensive SBST and fault localization methodology for GPUs is presented, which exploits different custom test strategies for each component inside the GPU architecture.
Abstract: Nowadays, Graphical Processing Units (GPUs) have become increasingly popular due to their high computational power and low prices. This makes them particularly suitable for high-performance computing applications, like data elaboration and financial computation. In these fields, high efficient test methodologies are mandatory. One of the most effective ways to detect and localize hardware faults in GPUs is a Software-Based-Self-Test methodology (SBST). In this paper a fully comprehensive SBST and fault localization methodology for GPUs is presented. This novel approach exploits different custom test strategies for each component inside the GPU architecture. Such strategies guarantee both permanent fault detection and accurate fault localization.

43 citations

Journal ArticleDOI
TL;DR: This article proposes an innovative PUF design based on STT-MRAM memory that exploits the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization and demonstrates that the proposed solution is robust, unclonable, and unpredictable.
Abstract: Physically Unclonable Functions (PUFs) are emerging cryptographic primitives used to implement low-cost device authentication and secure secret key generation. Weak PUFs (i.e., devices able to generate a single signature or to deal with a limited number of challenges) are widely discussed in literature. One of the most investigated solutions today is based on SRAMs. However, the rapid development of low-power, high-density, high-performance SoCs has pushed the embedded memories to their limits and opened the field to the development of emerging memory technologies. The Spin-Transfer-Torque Magnetic Random Access Memory (STT-MRAM) has emerged as a promising choice for embedded memories due to its reduced read/write latency and high CMOS integration capability. In this article, we propose an innovative PUF design based on STT-MRAM memory. We exploit the high variability affecting the electrical resistance of the Magnetic Tunnel Junction (MTJ) device in anti-parallel magnetization. We will demonstrate that the proposed solution is robust, unclonable, and unpredictable.

39 citations

Proceedings ArticleDOI
TL;DR: An implementation of the 2-D Convolution algorithm on a FPGA architecture designed to support this operation in space applications reduces the area needed keeping good performance, making it appropriate for embedded systems in critical space applications.
Abstract: The 2-D Convolution is an algorithm widely used in image and video processing. Although its computation is simple, its implementation requires a high computational power and an intensive use of memory. Field Programmable Gate Arrays (FPGA) architectures were proposed to accelerate calculations of 2-D Convolution and the use of buffers implemented on FPGAs are used to avoid direct memory access. In this paper we present an implementation of the 2-D Convolution algorithm on a FPGA architecture designed to support this operation in space applications. This proposed solution dramatically decreases the area needed keeping good performance, making it appropriate for embedded systems in critical space applications.

37 citations

Journal ArticleDOI
05 Feb 2016-Sensors
TL;DR: This paper presents a novel master–slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX and demonstrates that the operator was able to directly control volunteers’ hands movements.
Abstract: Vision-based Pose Estimation (VPE) represents a non-invasive solution to allow a smooth and natural interaction between a human user and a robotic system, without requiring complex calibration procedures. Moreover, VPE interfaces are gaining momentum as they are highly intuitive, such that they can be used from untrained personnel (e.g., a generic caregiver) even in delicate tasks as rehabilitation exercises. In this paper, we present a novel master-slave setup for hand telerehabilitation with an intuitive and simple interface for remote control of a wearable hand exoskeleton, named HX. While performing rehabilitative exercises, the master unit evaluates the 3D position of a human operator's hand joints in real-time using only a RGB-D camera, and commands remotely the slave exoskeleton. Within the slave unit, the exoskeleton replicates hand movements and an external grip sensor records interaction forces, that are fed back to the operator-therapist, allowing a direct real-time assessment of the rehabilitative task. Experimental data collected with an operator and six volunteers are provided to show the feasibility of the proposed system and its performances. The results demonstrate that, leveraging on our system, the operator was able to directly control volunteers' hands movements.

31 citations

Journal ArticleDOI
TL;DR: A preliminary version of PARLOMA, a novel system to enable remote communication between deaf-blind persons, is presented, composed of a low-cost depth sensor as the only input device, paired with a robotic hand as the output device.
Abstract: Deaf-blindness forces people to live in isolation. At present, there is no existing technological solution enabling two (or many) deaf-blind people to communicate remotely among themselves in tacti...

28 citations


Cited by
More filters
01 Jan 2009
TL;DR: This paper presents a meta-modelling framework for modeling and testing the robustness of the modeled systems and some of the techniques used in this framework have been developed and tested in the field.
Abstract: ing WS1S Systems to Verify Parameterized Networks . . . . . . . . . . . . 188 Kai Baukus, Saddek Bensalem, Yassine Lakhnech and Karsten Stahl FMona: A Tool for Expressing Validation Techniques over Infinite State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204 J.-P. Bodeveix and M. Filali Transitive Closures of Regular Relations for Verifying Infinite-State Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220 Bengt Jonsson and Marcus Nilsson Diagnostic and Test Generation Using Static Analysis to Improve Automatic Test Generation . . . . . . . . . . . . . 235 Marius Bozga, Jean-Claude Fernandez and Lucian Ghirvu Efficient Diagnostic Generation for Boolean Equation Systems . . . . . . . . . . . . 251 Radu Mateescu Efficient Model-Checking Compositional State Space Generation with Partial Order Reductions for Asynchronous Communicating Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266 Jean-Pierre Krimm and Laurent Mounier Checking for CFFD-Preorder with Tester Processes . . . . . . . . . . . . . . . . . . . . . . . 283 Juhana Helovuo and Antti Valmari Fair Bisimulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 299 Thomas A. Henzinger and Sriram K. Rajamani Integrating Low Level Symmetries into Reachability Analysis . . . . . . . . . . . . . 315 Karsten Schmidt Model-Checking Tools Model Checking Support for the ASM High-Level Language . . . . . . . . . . . . . . 331 Giuseppe Del Castillo and Kirsten Winter Table of

1,687 citations

Proceedings Article
22 Feb 2016
TL;DR: A large-scale field study covering many millions of drive days, ten different drive models, different flash technologies, and no evidence that higher-end SLC drives are more reliable than MLC drives within typical drive lifetimes is provided.
Abstract: As solid state drives based on flash technology are becoming a staple for persistent data storage in data centers, it is important to understand their reliability characteristics. While there is a large body of work based on experiments with individual flash chips in a controlled lab environment under synthetic workloads, there is a dearth of information on their behavior in the field. This paper provides a large-scale field study covering many millions of drive days, ten different drive models, different flash technologies (MLC, eMLC, SLC) over 6 years of production use in Google's data centers. We study a wide range of reliability characteristics and come to a number of unexpected conclusions. For example, raw bit error rates (RBER) grow at a much slower rate with wearout than the exponential rate commonly assumed and, more importantly, they are not predictive of uncorrectable errors or other error modes. The widely used metric UBER (uncorrectable bit error rate) is not a meaningful metric, since we see no correlation between the number of reads and the number of uncorrectable errors. We see no evidence that higher-end SLC drives are more reliable than MLC drives within typical drive lifetimes. Comparing with traditional hard disk drives, flash drives have a significantly lower replacement rate in the field, however, they have a higher rate of uncorrectable errors.

239 citations

Journal ArticleDOI
TL;DR: This paper provides a review of different mechanisms that manipulate the state of a nano-magnet using current-induced spin-transfer torque and demonstrates how such mechanisms have been engineered to develop device structures for energy-efficient on-chip memory and logic.
Abstract: As CMOS technology begins to face significant scaling challenges, considerable research efforts are being directed to investigate alternative device technologies that can serve as a replacement for CMOS. Spintronic devices, which utilize the spin of electrons as the state variable for computation, have recently emerged as one of the leading candidates for post-CMOS technology. Recent experiments have shown that a nano-magnet can be switched by a spin-polarized current and this has led to a number of novel device proposals over the past few years. In this paper, we provide a review of different mechanisms that manipulate the state of a nano-magnet using current-induced spin-transfer torque and demonstrate how such mechanisms have been engineered to develop device structures for energy-efficient on-chip memory and logic.

194 citations

Journal ArticleDOI
TL;DR: Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology, and to review emerging nanotechnology-based PUFs.
Abstract: Physical unclonable functions (PUFs) are increasingly used for authentication and identification applications as well as the cryptographic key generation. An important feature of a PUF is the reliance on minute random variations in the fabricated hardware to derive a trusted random key. Currently, most PUF designs focus on exploiting process variations intrinsic to the CMOS technology. In recent years, progress in emerging nanoelectronic devices has demonstrated an increase in variation as a consequence of scaling down to the nanoregion. To date, emerging PUFs with nanotechnology have not been fully established, but they are expected to emerge. Initial research in this area aims to provide security primitives for emerging integrated circuits with nanotechnology. In this paper, we review emerging nanotechnology-based PUFs.

157 citations

Proceedings ArticleDOI
01 Feb 2018
TL;DR: The DRAM latency PUF is introduced, a new class of fast, reliable DRAM PUFs that satisfy runtime-accessible PUF requirements and are quickly generated irrespective of operating temperature using a real system with no additional hardware modications.
Abstract: Physically Unclonable Functions (PUFs) are commonly used in cryptography to identify devices based on the uniqueness of their physical microstructures. DRAM-based PUFs have numerous advantages over PUF designs that exploit alternative substrates: DRAM is a major component of many modern systems, and a DRAM-based PUF can generate many unique identiers. However, none of the prior DRAM PUF proposals provide implementations suitable for runtime-accessible PUF evaluation on commodity DRAM devices. Prior DRAM PUFs exhibit unacceptably high latencies, especially at low temperatures (e.g., >125.8s on average for a 64KiB memory segment below 55C), and they cause high system interference by keeping part of DRAM unavailable during PUF evaluation. In this paper, we introduce the DRAM latency PUF, a new class of fast, reliable DRAM PUFs. The key idea is to reduce DRAM read access latency below the reliable datasheet specications using software-only system calls. Doing so results in error patterns that reect the compound eects of manufacturing variations in various DRAM structures (e.g., capacitors, wires, sense ampli- ers). Based on a rigorous experimental characterization of 223 modern LPDDR4 DRAM chips, we demonstrate that these error patterns 1) satisfy runtime-accessible PUF requirements, and 2) are quickly generated (i.e., at 88.2ms) irrespective of operating temperature using a real system with no additional hardware modications. We show that, for a constant DRAM capacity overhead of 64KiB, our implementation of the DRAM latency PUF enables an average (minimum, maximum) PUF evaluation time speedup of 152x (109x, 181x) at 70C and 1426x (868x, 1783x) at 55C when compared to a DRAM retention PUF and achieves greater speedups at even lower temperatures.

143 citations