scispace - formally typeset
Search or ask a question
Author

Marco Liscidini

Bio: Marco Liscidini is an academic researcher from University of Pavia. The author has contributed to research in topics: Photon & Photonics. The author has an hindex of 40, co-authored 241 publications receiving 5084 citations. Previous affiliations of Marco Liscidini include Vanderbilt University & University of Toronto.


Papers
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light, and demonstrate four-wave mixing with low (5mW) continuous-Wave pump power at λ = 1,550nm, in high-index, doped silica glass ring resonators.
Abstract: Photonic integrated circuits are a key component1 of future telecommunication networks, where demands for greater bandwidth, network flexibility, and low energy consumption and cost must all be met. The quest for all-optical components has naturally targeted materials with extremely large nonlinearity, including chalcogenide glasses2 and semiconductors, such as silicon3 and AlGaAs (ref. 4). However, issues such as immature fabrication technology for chalcogenide glass and high linear and nonlinear losses for semiconductors motivate the search for other materials. Here we present the first demonstration of nonlinear optics in integrated silica-based glass waveguides using continuous-wave light. We demonstrate four-wave mixing, with low (5 mW) continuous-wave pump power at λ = 1,550 nm, in high-index, doped silica glass ring resonators5. The low loss, design flexibility and manufacturability of our device are important attributes for low-cost, high-performance, nonlinear all-optical photonic integrated circuits. The ability to perform low-power, continuous-wave nonlinear optics, in particular four-wave mixing, is demonstrated in doped-silica-glass waveguide ring resonators. The device's low loss and ease of manufacture may make the approach suitable for nonlinear all-optical photonic integrated circuits.

412 citations

Journal ArticleDOI
01 Jan 2019
TL;DR: The photovoltaic conversion of solar energy starts to give an appreciable contribution to power generation in many countries, with more than 90% of the global PV market relying on solar cells base.
Abstract: Photovoltaic (PV) conversion of solar energy starts to give an appreciable contribution to power generation in many countries, with more than 90% of the global PV market relying on solar cells base...

260 citations

Journal ArticleDOI
TL;DR: In this paper, a microring resonator capable of emitting time-energy entangled photons has been demonstrated on a silicon chip, with an internal pair generation exceeding 107 Hz, and the source operates at milliwatt and submilliwatt pump power.
Abstract: Entanglement is a fundamental resource in quantum information processing Several studies have explored the integration of sources of entangled states on a silicon chip, but the devices demonstrated so far require millimeter lengths and pump powers of the order of hundreds of milliwatts to produce an appreciable photon flux, hindering their scalability and dense integration Microring resonators have been shown to be efficient sources of photon pairs, but entangled state emission has never been proven in these devices Here we report the first demonstration, to the best of our knowledge, of a microring resonator capable of emitting time-energy entangled photons We use a Franson experiment to show a violation of Bell’s inequality by more than seven standard deviations with an internal pair generation exceeding 107 Hz The source is integrated on a silicon chip, operates at milliwatt and submilliwatt pump power, emits in the telecom band, and outputs into a photonic waveguide These are all essential features of an entangled state emitter for a quantum photonic network

249 citations

Journal ArticleDOI
TL;DR: Recent advances in the realisation of integrated sources of photonic quantum states are reviewed, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory platforms as well as with chip-scale semiconductor technology.
Abstract: The ability to generate complex optical photon states involving entanglement between multiple optical modes is not only critical to advancing our understanding of quantum mechanics but will play a key role in generating many applications in quantum technologies. These include quantum communications, computation, imaging, microscopy and many other novel technologies that are constantly being proposed. However, approaches to generating parallel multiple, customisable bi- and multi-entangled quantum bits (qubits) on a chip are still in the early stages of development. Here, we review recent advances in the realisation of integrated sources of photonic quantum states, focusing on approaches based on nonlinear optics that are compatible with contemporary optical fibre telecommunications and quantum memory platforms as well as with chip-scale semiconductor technology. These new and exciting platforms hold the promise of compact, low-cost, scalable and practical implementations of sources for the generation and manipulation of complex quantum optical states on a chip, which will play a major role in bringing quantum technologies out of the laboratory and into the real world. Several new platforms are promising for generating and manipulating complex quantum optical states on a chip. Chip-based sources of quantum states of light are needed to bring quantum technologies out of the lab and into the real world, but such sources are still immature. David Moss at Swinburne University of Technology, Australia, and an international team have reviewed progress in developing and characterizing such sources. Waveguide, cavity and ring resonator devices made from nonlinear materials such as silicon, silicon nitride, silicon oxynitride, Hydex and periodically poled lithium niobate offer scientists a rich variety of sources. Furthermore, many of these technologies can be integrated with silicon CMOS photonics, providing a path for building sophisticated, scalable optical integrated circuits for generating and manipulating quantum optical states for applications in quantum information processing and communications.

228 citations

Journal ArticleDOI
TL;DR: In this article, spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm was used to generate correlated photon pairs with a photon time correlation with a coincidence-to-accidental ratio as high as 250.
Abstract: We demonstrate efficient generation of correlated photon pairs by spontaneous four wave mixing in a 5 μm radius silicon ring resonator in the telecom band around 1550 nm. By optically pumping our device with a 200 μW continuous wave laser, we obtain a pair generation rate of 0.2 MHz and demonstrate photon time correlations with a coincidence-to-accidental ratio as high as 250. The results are in good agreement with theoretical predictions and show the potential of silicon micro-ring resonators as room temperature sources for integrated quantum optics applications.

174 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Proceedings Article
01 Jan 1999
TL;DR: In this paper, the authors describe photonic crystals as the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures, and the interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.
Abstract: The term photonic crystals appears because of the analogy between electron waves in crystals and the light waves in artificial periodic dielectric structures. During the recent years the investigation of one-, two-and three-dimensional periodic structures has attracted a widespread attention of the world optics community because of great potentiality of such structures in advanced applied optical fields. The interest in periodic structures has been stimulated by the fast development of semiconductor technology that now allows the fabrication of artificial structures, whose period is comparable with the wavelength of light in the visible and infrared ranges.

2,722 citations

Journal ArticleDOI
TL;DR: This Review presents a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index met amaterials and anisotropic metammaterials, and discusses current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics.
Abstract: The ideal material for nanophotonic applications will have a large refractive index at optical frequencies, respond to both the electric and magnetic fields of light, support large optical chirality and anisotropy, confine and guide light at the nanoscale, and be able to modify the phase and amplitude of incoming radiation in a fraction of a wavelength. Artificial electromagnetic media, or metamaterials, based on metallic or polar dielectric nanostructures can provide many of these properties by coupling light to free electrons (plasmons) or phonons (phonon polaritons), respectively, but at the inevitable cost of significant energy dissipation and reduced device efficiency. Recently, however, there has been a shift in the approach to nanophotonics. Low-loss electromagnetic responses covering all four quadrants of possible permittivities and permeabilities have been achieved using completely transparent and high-refractive-index dielectric building blocks. Moreover, an emerging class of all-dielectric metamaterials consisting of anisotropic crystals has been shown to support large refractive index contrast between orthogonal polarizations of light. These advances have revived the exciting prospect of integrating exotic electromagnetic effects in practical photonic devices, to achieve, for example, ultrathin and efficient optical elements, and realize the long-standing goal of subdiffraction confinement and guiding of light without metals. In this Review, we present a broad outline of the whole range of electromagnetic effects observed using all-dielectric metamaterials: high-refractive-index nanoresonators, metasurfaces, zero-index metamaterials and anisotropic metamaterials. Finally, we discuss current challenges and future goals for the field at the intersection with quantum, thermal and silicon photonics, as well as biomimetic metasurfaces.

1,634 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®.
Abstract: Nonlinear photonic chips can generate and process signals all-optically with far superior performance to that possible electronically — particularly with respect to speed. Although silicon-on-insulator has been the leading platform for nonlinear optics, its high two-photon absorption at telecommunication wavelengths poses a fundamental limitation. We review recent progress in non-silicon CMOS-compatible platforms for nonlinear optics, with a focus on Si3N4 and Hydex®. These material systems have opened up many new capabilities such as on-chip optical frequency comb generation and ultrafast optical pulse generation and measurement. We highlight their potential future impact as well as the challenges to achieving practical solutions for many key applications. This article reviews recent progress in the use of silicon nitride and Hydex as non-silicon-based CMOS-compatible platforms for nonlinear optics. New capabilities such as on-chip optical frequency comb generation, ultrafast optical pulse generation and measurement using these materials, and their potential future impact and challenges are covered.

1,218 citations