scispace - formally typeset
Search or ask a question
Author

Marco Liuzzo

Bio: Marco Liuzzo is an academic researcher from National Institute of Geophysics and Volcanology. The author has contributed to research in topics: Volcano & Magma. The author has an hindex of 25, co-authored 62 publications receiving 2106 citations.
Topics: Volcano, Magma, Lava, Volcanic Gases, Geology


Papers
More filters
Journal ArticleDOI
01 Dec 2007-Geology
TL;DR: In this article, the results of two years of real-time observation of H2O, CO2, and SO2 in volcanic gases from Mount Etna volcano were unambiguously demonstrated that increasing CO2/SO2 ratios can allow detection of pre-eruptive degassing of rising magmas.
Abstract: It is generally accepted, but not experimentally proven, that a quantitative prediction of volcanic eruptions is possible from the evaluation of volcanic gas data. By discussing the results of two years of real-time observation of H2O, CO2, and SO2 in volcanic gases from Mount Etna volcano, we unambiguously demonstrate that increasing CO2/SO2 ratios can allow detection of the pre-eruptive degassing of rising magmas. Quantitative modeling by the use of a saturation model allows us to relate the pre-eruptive increases of the CO2/SO2 ratio to the refilling of Etna's shallow conduits with CO2-rich deep-reservoir magmas, leading to pressurization and triggering of eruption. The advent of real-time observations of H2O, CO2, and SO2, combined with well-constrained models of degassing, represents a step forward in eruption forecasting.

287 citations

Journal ArticleDOI
TL;DR: In this paper, the authors report on the results of two years of in-situ sensing of the CO 2 /SO 2 ratio in Stromboli's volcanic gas plume, in the attempt to put constraints on the trigger mechanisms and dynamics of the eruption.

155 citations

Journal ArticleDOI
TL;DR: In this article, the authors used the MultiGAS technique to provide the best documented record of gas plume discharges from Stromboli volcano to date, and showed that Strombolian's gases are dominated by H2O (48−98−mol); mean, 80%), and by CO2 (2−50−mol%; mean, 17%) and SO2 (0.2−14−mol; mean, 3%).

144 citations

Journal ArticleDOI
TL;DR: In this article, the first measurements of bromine and iodine emissions from Mount Etna were made using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr−1 and 0.01 kt dc−1 for Br and I, respectively, from April to October 2004, from which they estimate global Br and iodine fluxes of order 13 (range, 3-40) and 1.11 (range 0.04-6.6) kt rc−1.
Abstract: [1] Constraining fluxes of volcanic bromine and iodine to the atmosphere is important given the significant role these species play in ozone depletion. However, very few such measurements have been made hitherto, such that global volcanic fluxes are poorly constrained. Here we extend the data set of volcanic Br and I degassing by reporting the first measurements of bromine and iodine emissions from Mount Etna. These data were obtained using filter packs and contemporaneous ultraviolet spectroscopic SO2 flux measurements, resulting in time-averaged emission rates of 0.7 kt yr−1 and 0.01 kt yr−1 for Br and I, respectively, from April to October 2004, from which we estimate global Br and I fluxes of order 13 (range, 3–40) and 0.11 (range, 0.04–6.6) kt yr−1. Observed changes in plume composition highlight the coherent geochemical behavior of HCl, HF, HBr, and HI during magmatic degassing, and strong fractionation of these species with respect to SO2.

115 citations

Journal ArticleDOI
TL;DR: In this paper, the total volatile flux from Mount Etna volcano has been characterised for the first time, by summing the simultaneously evaluated fluxes of the three main volcanogenic volatiles: H2O, CO2 and SO2.
Abstract: [1] The Total Volatile (TV) flux from Mount Etna volcano has been characterised for the first time, by summing the simultaneously-evaluated fluxes of the three main volcanogenic volatiles: H2O, CO2 and SO2. SO2 flux was determined by routine DOAS traverse measurements, while H2O and CO2 were evaluated by scaling MultiGAS-sensed H2O/SO2 and CO2/SO2 plume ratios to the UV-sensed SO2 flux. The time-averaged TV flux from Etna is evaluated at ∼21,000 t·day−1, with a large fraction accounted for by H2O (∼13,000 t·day−1). H2O dominates (≥70%) the volatile budget during syn-eruptive degassing, while CO2 and H2O contribute equally to the TV flux during passive degassing. The CO2 flux was observed to be particularly high prior to the 2006 eruption, suggesting that this parameter is a good candidate for eruption prediction at basaltic volcanoes.

107 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Atmospheric Chemistry of Iodine Alfonso Saiz-Lopez,* John M. C. Plane,* Alex R. Baker, Lucy J. Carpenter, Roland von Glasow, Juan C. G omez Martín, Gordon McFiggans, and Russell W. Smith.
Abstract: Atmospheric Chemistry of Iodine Alfonso Saiz-Lopez,* John M. C. Plane,* Alex R. Baker, Lucy J. Carpenter, Roland von Glasow, Juan C. G omez Martín, Gordon McFiggans, and Russell W. Saunders Laboratory for Atmospheric and Climate Science (CIAC), CSIC, Toledo, Spain School of Chemistry, University of Leeds, Leeds, LS2 9JT, United Kingdom School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, United Kingdom Department of Chemistry, University of York, Heslington, York YO10 5DD, United Kingdom School of Earth, Atmospheric & Environmental Sciences, University of Manchester, Manchester, M13 9PL, United Kingdom

429 citations

Journal ArticleDOI
TL;DR: In this article, a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs is presented to better understand human influence on Hg cycling and timescales for responses.
Abstract: [1] Elevated mercury (Hg) in marine and terrestrial ecosystems is a global health concern because of the formation of toxic methylmercury. Humans have emitted Hg to the atmosphere for millennia, and this Hg has deposited and accumulated into ecosystems globally. Here we present a global biogeochemical model with fully coupled atmospheric, terrestrial, and oceanic Hg reservoirs to better understand human influence on Hg cycling and timescales for responses. We drive the model with a historical inventory of anthropogenic emissions from 2000 BC to present. Results show that anthropogenic perturbations introduced to surface reservoirs (atmosphere, ocean, or terrestrial) accumulate and persist in the subsurface ocean for decades to centuries. The simulated present-day atmosphere is enriched by a factor of 2.6 relative to 1840 levels, consistent with sediment archives, and by a factor of 7.5 relative to natural levels (2000 BC). Legacy anthropogenic Hg re-emitted from surface reservoirs accounts for 60% of present-day atmospheric deposition, compared to 27% from primary anthropogenic emissions, and 13% from natural sources. We find that only 17% of the present-day Hg in the surface ocean is natural and that half of its anthropogenic enrichment originates from pre-1950 emissions. Although Asia is presently the dominant contributor to primary anthropogenic emissions, only 17% of the surface ocean reservoir is of Asian anthropogenic origin, as compared to 30% of North American and European origin. The accumulated burden of legacy anthropogenic Hg means that future deposition will increase even if primary anthropogenic emissions are held constant. Aggressive global Hg emission reductions will be necessary just to maintain oceanic Hg concentrations at present levels.

375 citations

Journal ArticleDOI
TL;DR: In this article, the applicability of the Cl/Br molar ratio for identifying the origin of groundwater salinity is presented according to the experience gained in Spain and Portugal, where data have been collected from different areas of Spanish and Portugal and explained and illustrated by two cases described in detail.

360 citations

Journal ArticleDOI
TL;DR: The role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth as discussed by the authors, but the uncertainty in our knowledge of this critical input into the geological carbon cycle led Berner and Lagasa (1989) to state that it is the most vexing problem facing us in understanding that cycle.
Abstract: Over long periods of time (~Ma), we may consider the oceans, atmosphere and biosphere as a single exospheric reservoir for CO2. The geological carbon cycle describes the inputs to this exosphere from mantle degassing, metamorphism of subducted carbonates and outputs from weathering of aluminosilicate rocks (Walker et al. 1981). A feedback mechanism relates the weathering rate with the amount of CO2 in the atmosphere via the greenhouse effect (e.g., Wang et al. 1976). An increase in atmospheric CO2 concentrations induces higher temperatures, leading to higher rates of weathering, which draw down atmospheric CO2 concentrations (Berner 1991). Atmospheric CO2 concentrations are therefore stabilized over long timescales by this feedback mechanism (Zeebe and Caldeira 2008). This process may have played a role (Feulner et al. 2012) in stabilizing temperatures on Earth while solar radiation steadily increased due to stellar evolution (Bahcall et al. 2001). In this context the role of CO2 degassing from the Earth is clearly fundamental to the stability of the climate, and therefore to life on Earth. Notwithstanding this importance, the flux of CO2 from the Earth is poorly constrained. The uncertainty in our knowledge of this critical input into the geological carbon cycle led Berner and Lagasa (1989) to state that it is the most vexing problem facing us in understanding that cycle. Notwithstanding the uncertainties in our understanding of CO2 degassing from Earth, it is clear that these natural emissions were recently dwarfed by anthropogenic emissions, which have rapidly increased since industrialization began on a large scale in the 18th century, leading to a rapid increase in atmospheric CO2 concentrations. While atmospheric CO2 concentrations have varied between 190–280 ppm for the last 400,000 years (Zeebe and Caldeira 2008), human activity has produced a remarkable increase …

309 citations