scispace - formally typeset
Search or ask a question
Author

Marco Miniaci

Bio: Marco Miniaci is an academic researcher from university of lille. The author has contributed to research in topics: Metamaterial & Band gap. The author has an hindex of 20, co-authored 61 publications receiving 1461 citations. Previous affiliations of Marco Miniaci include University of Turin & Georgia Institute of Technology.

Papers published on a yearly basis

Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials is discussed, including numerical analysis of both surface and guided seismic waves, soil dissipation effects, and adopting a full 3D simulations.
Abstract: Earthquakes represent one of the most catastrophic natural events affecting mankind. At present, a universally accepted risk mitigation strategy for seismic events remains to be proposed. Most approaches are based on vibration isolation of structures rather than on the remote shielding of incoming waves. In this work, we propose a novel approach to the problem and discuss the feasibility of a passive isolation strategy for seismic waves based on large-scale mechanical metamaterials, including for the first time numerical analysis of both surface and guided waves, soil dissipation effects, and adopting a full 3D simulations. The study focuses on realistic structures that can be effective in frequency ranges of interest for seismic waves, and optimal design criteria are provided, exploring different metamaterial configurations, combining phononic crystals and locally resonant structures and different ranges of mechanical properties. Dispersion analysis and full-scale 3D transient wave transmission simulations are carried out on finite size systems to assess the seismic wave amplitude attenuation in realistic conditions. Results reveal that both surface and bulk seismic waves can be considerably attenuated, making this strategy viable for the protection of civil structures against seismic risk. The proposed remote shielding approach could open up new perspectives in the field of seismology and in related areas of low-frequency vibration damping or blast protection.

252 citations

Journal ArticleDOI
TL;DR: In this article, an elastic plate patterned according to a Kagome architecture with an accidental degeneracy of two Dirac cones induced by drilling through holes is proposed to obtain topologically protected helical edge waves in elastic media.
Abstract: The investigation of topologically protected waves in classical media has opened unique opportunities to achieve exotic properties like one-way phonon transport, protection from backscattering and immunity to imperfections. Contrary to acoustic and electromagnetic domains, their observation in elastic solids has so far been elusive due to the presence of both shear and longitudinal modes and their modal conversion at interfaces and free surfaces. Here we report the experimental observation of topologically protected helical edge waves in elastic media. The considered structure consists of an elastic plate patterned according to a Kagome architecture with an accidental degeneracy of two Dirac cones induced by drilling through holes. The careful breaking of symmetries couples the corresponding elastic modes which effectively emulates spin orbital coupling in the quantum spin Hall effect. The results shed light on the topological properties of the proposed plate waveguide and opens avenues for the practical realization of compact, passive and cost-effective elastic topological waveguides.

180 citations

Journal ArticleDOI
TL;DR: In this article, the first experimental demonstration of topologically protected helical edge modes, a robust approach to manipulating vibrations, with potential applications in sensing-signal processing and wave guiding.
Abstract: Elastic plates patterned with triangular and circular holes provide the first experimental demonstration of topologically protected helical edge modes, a robust approach to manipulating vibrations, with potential applications in sensing-signal processing and wave guiding.

167 citations

Journal ArticleDOI
TL;DR: In this paper, the authors theoretically analyze a single-phase solid metamaterial with quasi-resonant Bragg band gaps and show evidence that the latter are achieved by obtaining an overlap of the Bragg gap with local resonance modes of the matrix material, instead of the inclusion.

155 citations

Journal ArticleDOI
TL;DR: This work proposes and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection.
Abstract: The appearance of nonlinear effects in elastic wave propagation is one of the most reliable and sensitive indicators of the onset of material damage However, these effects are usually very small and can be detected only using cumbersome digital signal processing techniques Here, we propose and experimentally validate an alternative approach, using the filtering and focusing properties of phononic crystals to naturally select and reflect the higher harmonics generated by nonlinear effects, enabling the realization of time-reversal procedures for nonlinear elastic source detection The proposed device demonstrates its potential as an efficient, compact, portable, passive apparatus for nonlinear elastic wave sensing and damage detection

122 citations


Cited by
More filters
Book
01 Jan 1960

1,106 citations

Journal ArticleDOI
01 Apr 2019
TL;DR: In this paper, the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems are introduced, including Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals.
Abstract: The study of classical wave physics has been reinvigorated by incorporating the concept of the geometric phase, which has its roots in optics, and topological notions that were previously explored in condensed matter physics. Recently, sound waves and a variety of mechanical systems have emerged as excellent platforms that exemplify the universality and diversity of topological phases. In this Review, we introduce the essential physical concepts that underpin various classes of topological phenomena realized in acoustic and mechanical systems: Dirac points, the quantum Hall, quantum spin Hall and valley Hall effects, Floquet topological phases, 3D gapless states and Weyl crystals. This Review describes topological phenomena that can be realized in acoustic and mechanical systems. Methods of symmetry breaking are described, along with the consequences and rich phenomena that emerge.

535 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of Carbon Nanotube (CNT) agglomeration on free vibrations of laminated composite doubly-curved shells and panels reinforced by CNTs is investigated.
Abstract: This paper aims at investigating the effect of Carbon Nanotube (CNT) agglomeration on the free vibrations of laminated composite doubly-curved shells and panels reinforced by CNTs. The great performances of doubly-curved structures are joined with the excellent mechanical properties of CNTs. Several laminations schemes and various CNT exponential distributions along the thickness of the structures are considered. Thus, it is evident that the shell dynamic behavior can be affected by many parameters which characterize the reinforcing phase. A widespread parametric study is performed in order to show the natural frequency variation. The general theoretical model for shell structures is based on the so-called Carrera Unified Formulation (CUF) which allows to consider several Higher-order Shear Deformations Theories (HSDTs). In addition, a complete characterization of the mechanical properties of CNTs is presented. The governing equations for the free vibration analysis are solved numerically by means of the well-known Generalized Differential Quadrature (GDQ) method due to its accuracy, stability and reliability features.

300 citations

Journal ArticleDOI
TL;DR: In this article, the authors review how reciprocity breaks down in materials with momentum bias, structured space-dependent and time-dependent constitutive properties, and constitutive nonlinearity, and report on recent advances in the modelling and fabrication of these materials, as well as on experiments demonstrating nonreciprocal acoustic and elastic wave propagation therein.
Abstract: The law of reciprocity in acoustics and elastodynamics codifies a relation of symmetry between action and reaction in fluids and solids. In its simplest form, it states that the frequency-response functions between any two material points remain the same after swapping source and receiver, regardless of the presence of inhomogeneities and losses. As such, reciprocity has enabled numerous applications that make use of acoustic and elastic wave propagation. A recent change in paradigm has prompted us to see reciprocity under a new light: as an obstruction to the realization of wave-bearing media in which the source and receiver are not interchangeable. Such materials may enable the creation of devices such as acoustic one-way mirrors, isolators and topological insulators. Here, we review how reciprocity breaks down in materials with momentum bias, structured space-dependent and time-dependent constitutive properties, and constitutive nonlinearity, and report on recent advances in the modelling and fabrication of these materials, as well as on experiments demonstrating nonreciprocal acoustic and elastic wave propagation therein. The success of these efforts holds promise to enable robust, unidirectional acoustic and elastic wave-steering capabilities that exceed what is currently possible in conventional materials, metamaterials or phononic crystals. Nonreciprocal acoustic and elastic wave propagation may enable the creation of devices such as acoustic one-way mirrors, isolators and topological insulators. This Review presents advances in the creation of materials that break reciprocity and realize robust, unidirectional acoustic and elastic wave steering.

245 citations

Journal ArticleDOI
Haiyan Fan1, Baizhan Xia1, Liang Tong1, Shengjie Zheng1, Dejie Yu1 
TL;DR: The topological shape-dependent corner states open a new route for the design of the topologically protected and reconfigurable 0D localized resonances and provide an excellent platform for the topological transformation of the elastic energy among 2D bulk, 1D edge, and 0D corner modes.
Abstract: Topologically gapless edge states, characterized by topological invariants and Berry's phases of bulk energy bands, provide amazing techniques to robustly control the reflectionless propagation of electrons, photons, and phonons. Recently, a new family of topological phases, dictated by the bulk polarization, has been observed, leading to the discovery of the higher-order topological insulators (HOTIs). So far, the HOTIs have been demonstrated in mechanical and electromagnetic systems and electrical circuits with quantized quadrupole polarization and, more recently, have been experimentally realized in optical and acoustic systems. Here, we realize the higher-order topological states in a two-dimensional (2D) continuous elastic system. We experimentally observe the gapped one-dimensional (1D) edge states, the trivially gapped zero-dimensional (0D) corner states, and the topologically protected 0D corner states. Compared with the trivial corner modes, the topological ones, immunizing against defects, are robustly localized at the obtuse-angled but not the acute-angled corners. The topological shape-dependent corner states open a new route for the design of the topologically protected and reconfigurable 0D localized resonances and provide an excellent platform for the topological transformation of the elastic energy among 2D bulk, 1D edge, and 0D corner modes.

223 citations