scispace - formally typeset
Search or ask a question
Author

Marco Piani

Bio: Marco Piani is an academic researcher from University of Strathclyde. The author has contributed to research in topics: Quantum entanglement & Quantum discord. The author has an hindex of 30, co-authored 85 publications receiving 4638 citations. Previous affiliations of Marco Piani include University of Waterloo & University of Trieste.


Papers
More filters
Journal ArticleDOI
TL;DR: The robustness of coherence is defined and proven to be a full monotone in the context of the recently introduced resource theories of quantum coherence, and the measure is shown to be observable.
Abstract: Quantifying coherence is an essential endeavour for both quantum foundations and quantum technologies. Here the robustness of coherence is defined and proven a full monotone in the context of the recently introduced resource theories of quantum coherence. The measure is shown to be observable, as it can be recast as the expectation value of a coherence witness operator for any quantum state. The robustness of coherence is evaluated analytically on relevant classes of states, and an efficient semidefinite program that computes it on general states is given. An operational interpretation is finally provided: the robustness of coherence quantifies the advantage enabled by a quantum state in a phase discrimination task.

480 citations

Journal ArticleDOI
TL;DR: It is proved that, for any bipartite steerable state, there are instances of the quantum subchannel discrimination problem for which this state allows a correct discrimination with strictly higher probability than in the absence of entanglement, even when measurements are restricted to local measurements aided by one-way communication.
Abstract: Steering is the entanglement-based quantum effect that embodies the "spooky action at a distance" disliked by Einstein and scrutinized by Einstein, Podolsky, and Rosen. Here we provide a necessary and sufficient characterization of steering, based on a quantum information processing task: the discrimination of branches in a quantum evolution, which we dub subchannel discrimination. We prove that, for any bipartite steerable state, there are instances of the quantum subchannel discrimination problem for which this state allows a correct discrimination with strictly higher probability than in the absence of entanglement, even when measurements are restricted to local measurements aided by one-way communication. On the other hand, unsteerable states are useless in such conditions, even when entangled. We also prove that the above steering advantage can be exactly quantified in terms of the steering robustness, which is a natural measure of the steerability exhibited by the state.

384 citations

Journal ArticleDOI
TL;DR: It is proved that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartsite classical probability distribution.
Abstract: We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational approach leads to natural definitions of measures for quantumness of correlations. It also reproduces the standard no-broadcasting theorem as a special case.

377 citations

Journal ArticleDOI
TL;DR: It is shown that two, noninteracting two-level systems, immersed in a common bath, can become mutually entangled when evolving according to a Markovian, completely positive reduced dynamics.
Abstract: We show that two, noninteracting two-level systems, immersed in a common bath, can become mutually entangled when evolving according to a Markovian, completely positive reduced dynamics.

375 citations

Journal ArticleDOI
TL;DR: In this paper, the authors give quantum discord its first information-theoretic operational meaning in terms of entanglement consumption in an extended quantum-state-merging protocol and further relate the asymmetry of quantum discord with the performance imbalance in quantum state merging and dense coding.
Abstract: Quantum discord quantifies nonclassical correlations beyond the standard classification of quantum states into entangled and unentangled. Although it has received considerable attention, it still lacks any precise interpretation in terms of some protocol in which quantum features are relevant. Here we give quantum discord its first information-theoretic operational meaning in terms of entanglement consumption in an extended quantum-state-merging protocol. We further relate the asymmetry of quantum discord with the performance imbalance in quantum state merging and dense coding.

338 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
01 Apr 1988-Nature
TL;DR: In this paper, a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) is presented.
Abstract: Deposits of clastic carbonate-dominated (calciclastic) sedimentary slope systems in the rock record have been identified mostly as linearly-consistent carbonate apron deposits, even though most ancient clastic carbonate slope deposits fit the submarine fan systems better. Calciclastic submarine fans are consequently rarely described and are poorly understood. Subsequently, very little is known especially in mud-dominated calciclastic submarine fan systems. Presented in this study are a sedimentological core and petrographic characterisation of samples from eleven boreholes from the Lower Carboniferous of Bowland Basin (Northwest England) that reveals a >250 m thick calciturbidite complex deposited in a calciclastic submarine fan setting. Seven facies are recognised from core and thin section characterisation and are grouped into three carbonate turbidite sequences. They include: 1) Calciturbidites, comprising mostly of highto low-density, wavy-laminated bioclast-rich facies; 2) low-density densite mudstones which are characterised by planar laminated and unlaminated muddominated facies; and 3) Calcidebrites which are muddy or hyper-concentrated debrisflow deposits occurring as poorly-sorted, chaotic, mud-supported floatstones. These

9,929 citations

Journal ArticleDOI
TL;DR: In this article, the basic aspects of entanglement including its characterization, detection, distillation, and quantification are discussed, and a basic role of entonglement in quantum communication within distant labs paradigm is discussed.
Abstract: All our former experience with application of quantum theory seems to say: {\it what is predicted by quantum formalism must occur in laboratory} But the essence of quantum formalism - entanglement, recognized by Einstein, Podolsky, Rosen and Schr\"odinger - waited over 70 years to enter to laboratories as a new resource as real as energy This holistic property of compound quantum systems, which involves nonclassical correlations between subsystems, is a potential for many quantum processes, including ``canonical'' ones: quantum cryptography, quantum teleportation and dense coding However, it appeared that this new resource is very complex and difficult to detect Being usually fragile to environment, it is robust against conceptual and mathematical tools, the task of which is to decipher its rich structure This article reviews basic aspects of entanglement including its characterization, detection, distillation and quantifying In particular, the authors discuss various manifestations of entanglement via Bell inequalities, entropic inequalities, entanglement witnesses, quantum cryptography and point out some interrelations They also discuss a basic role of entanglement in quantum communication within distant labs paradigm and stress some peculiarities such as irreversibility of entanglement manipulations including its extremal form - bound entanglement phenomenon A basic role of entanglement witnesses in detection of entanglement is emphasized

6,980 citations

Journal ArticleDOI
TL;DR: In this article, the basic elements of entanglement theory for two or more particles and verification procedures, such as Bell inequalities, entangle witnesses, and spin squeezing inequalities, are discussed.
Abstract: How can one prove that a given state is entangled? In this paper we review different methods that have been proposed for entanglement detection. We first explain the basic elements of entanglement theory for two or more particles and then entanglement verification procedures such as Bell inequalities, entanglement witnesses, the determination of nonlinear properties of a quantum state via measurements on several copies, and spin squeezing inequalities. An emphasis is given on the theory and application of entanglement witnesses. We also discuss several experiments, where some of the presented methods have been implemented.

1,639 citations

Journal ArticleDOI
TL;DR: Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade as mentioned in this paper and different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed.
Abstract: One of the best signatures of nonclassicality in a quantum system is the existence of correlations that have no classical counterpart. Different methods for quantifying the quantum and classical parts of correlations are among the more actively studied topics of quantum-information theory over the past decade. Entanglement is the most prominent of these correlations, but in many cases unentangled states exhibit nonclassical behavior too. Thus distinguishing quantum correlations other than entanglement provides a better division between the quantum and classical worlds, especially when considering mixed states. Here different notions of classical and quantum correlations quantified by quantum discord and other related measures are reviewed. In the first half, the mathematical properties of the measures of quantum correlations are reviewed, related to each other, and the classical-quantum division that is common among them is discussed. In the second half, it is shown that the measures identify and quantify the deviation from classicality in various quantum-information-processing tasks, quantum thermodynamics, open-system dynamics, and many-body physics. It is shown that in many cases quantum correlations indicate an advantage of quantum methods over classical ones.

1,504 citations