scispace - formally typeset
Search or ask a question
Author

Marco Vecoli

Bio: Marco Vecoli is an academic researcher from Saudi Aramco. The author has contributed to research in topics: Ordovician & Acritarch. The author has an hindex of 26, co-authored 87 publications receiving 2038 citations. Previous affiliations of Marco Vecoli include Wittenberg University & Centre national de la recherche scientifique.


Papers
More filters
Journal ArticleDOI
01 Jun 2008-Lethaia
TL;DR: The early Palaeozoic phytoplankton (acritarch) radiation paralleled a long-term increase in sea level between the Early Cambrian and the Late Ordovician as discussed by the authors.
Abstract: The Early Palaeozoic phytoplankton (acritarch) radiation paralleled a long-term increase in sea level between the Early Cambrian and the Late Ordovician. In the Late Cambrian, after the SPICE delta C-13(carb) excursion, acritarchs underwent a major change in morphological disparity and their taxonomical diversity increased to reach highest values during the Middle Ordovician (Darriwilian). This highest phytoplankton diversity of the Palaeozoic was possibly the result of palaeogeography (greatest continental dispersal) and major orogenic and volcanic activity, which provided maximum ecospace and large amounts of nutrients. With its warm climate and high atmospheric CO2 levels, the Ordovician was similar to the Cretaceous: a period when phytoplankton diversity was at its maximum during the Mesozoic. With increased phytoplankton availability in the Late Cambrian and Ordovician a radiation of zooplanktonic organisms took place at the same time as a major diversification of suspension feeders. In addition, planktotrophy originated in invertebrate larvae during the Late Cambrian-Early Ordovician. These important changes in the trophic chain can be considered as a major palaeoecological revolution (part of the rise of the Palaeozoic Evolutionary Fauna of Sepkoski). There is now sufficient evidence that this trophic chain revolution was related to the diversification of the phytoplankton, of which the organic-walled fraction is partly preserved.

186 citations

Journal ArticleDOI
TL;DR: The Hirnantian GSSP in south China is tentatively correlated with latest Ordovician strata from the peri-Gondwanan “glacial” regions as discussed by the authors.

141 citations

Journal ArticleDOI
TL;DR: The most important Cambro-Ordovician acritarch bio-events are short periods of diversification, which also correspond to introduction of morphological innovations, observed in latest Cambrian and earliest Tremadoc, late tremor, early Arenig, basal Llanvirn, and latest Ashgill, and an important extinction phase in the early Caradoc as discussed by the authors.

122 citations

Journal ArticleDOI
25 Jun 2014-PLOS ONE
TL;DR: Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis follows a rise in atmospheric oxygen, consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.
Abstract: The Paleoproterozoic Era witnessed crucial steps in the evolution of Earth's surface environments following the first appreciable rise of free atmospheric oxygen concentrations ~2.3 to 2.1 Ga ago, and concomitant shallow ocean oxygenation. While most sedimentary successions deposited during this time interval have experienced thermal overprinting from burial diagenesis and metamorphism, the ca. 2.1 Ga black shales of the Francevillian B Formation (FB2) cropping out in southeastern Gabon have not. The Francevillian Formation contains centimeter-sized structures interpreted as organized and spatially discrete populations of colonial organisms living in an oxygenated marine ecosystem. Here, new material from the FB2 black shales is presented and analyzed to further explore its biogenicity and taphonomy. Our extended record comprises variably sized, shaped, and structured pyritized macrofossils of lobate, elongated, and rod-shaped morphologies as well as abundant non-pyritized disk-shaped macrofossils and organic-walled acritarchs. Combined microtomography, geochemistry, and sedimentary analysis suggest a biota fossilized during early diagenesis. The emergence of this biota follows a rise in atmospheric oxygen, which is consistent with the idea that surface oxygenation allowed the evolution and ecological expansion of complex megascopic life.

101 citations

Journal ArticleDOI
TL;DR: A review of recent published and new data on Avalonia east of the Midlands Microcraton is given in this paper, where a model of anticlockwise rotation of Avalonia of about 55° from Caradoc to Emsian is proposed to explain the deposition setting of megasequence 3 and the subsequent Acadian and Brabantian deformation.
Abstract: A review is given of recently published and new data on Avalonia east of the Midlands Microcraton. The three megasequences from Cambrian to mid Devonian described in Wales and Welsh Borderland are also present east of the Midlands Microcraton (Brabant Massif, Condroz, Ardennes, Remscheid and Ebbe inliers, Krefeld high). The three mega-sequences are caused by a tectonic driving mechanism and are explained by three different geodynamic contexts: an earlier phase with extensional basins or rifting and rather thick sequences, when Avalonia was still attached to Gondwana; a second phase with a shelf basin with moderately thin sequences when Avalonia was a separate continent and a later phase with a shelf or foreland basin development and thick sequences. Deformation of the megasequences 1 and 2 or 1 to 3 varies between areas. In Wales and the Lake District the Acadian phase is long-lived and active from early to mid Devonian. In the Ardennes inliers a deformation is active between the late Ordovician and the Silurian (Ardennian Phase), with a similar intensity as the core of the Brabant Massif, when present erosion levels are compared. The Brabant Massif is partly deformed by the long-lived Brabantian Phase from late Silurian till early mid Devonian. Both the Ardennes inliers and the Brabant Massif are not classic orogenic belts, only slate belts where no more than the epizone is reached at present erosion levels. Areas supposedly close to the microcraton or basement are nearly undeformed (SW Brabant Massif and central Condroz). A model of anticlockwise rotation of Avalonia of about 55° from Caradoc to Emsian is proposed to explain the deposition setting of megasequence 3 and the subsequent Acadian and Brabantian deformation. Immediately after the Avalonian microcontinent touched Baltica in Caradoc times it created a short-lived subduction magmatic event from The Wash to the Brabant Massif and soon after the magmatism ended a foreland basin developed. Possibly during and after that development a long-lived and slow compressional event occurred, leading to the deformation of the Anglo-Brabant Deformation Belt. In the early Devonian, contemporaneous with the shortening of the Anglo-Brabant Deformation Belt, extension occurred in the Rheno-Hercynian Zone, possibly caused by the same slow rotation of Avalonia. More evidence emerges that Avalonia cast of the Midlands Microcraton comprises not one but probably two terranes: the remnant of the palaeocontinent Avalonia, and what is called the palaeocontinent Far Eastern Avalonia; the latter is only occasionally observed in the few deep boreholes into the Heligoland-Pomerania Deformation Belt, in southern Denmark, NE Germany and NW Poland, with scant available indirect data in between indicating only Proterozoic basement and no Caledonian deformation. For Far Eastern Avalonia a similar palaeogeographical history is postulated as Avalonia, with rifting from Gondwana in Arenig or earlier times, collision with Baltica before the mid-Ashgill and deformation between the late Ordovician and latest Silurian. The Avalonia concept might need to be expanded to an 'Avalonian Terrane Assemblage' with cratonic cores and small short-lived oceans as in the Armorican Terrane Assemblage.

93 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: A review of the state of bioaerosol research, highlights recent advances, and outlines future perspectives in terms of identification, characterization, transport and transformation processes, as well as their interactions with climate, health, and ecosystems, focusing on the role bio-aerosols play in the Earth system.

588 citations

Journal ArticleDOI
TL;DR: This work provides a general overview of the current state of affairs regarding the understanding, measurement and application of MWL in the design of complex systems over the last three decades, and discusses contemporary challenges for applied research.
Abstract: Mental workload (MWL) is one of the most widely used concepts in ergonomics and human factors and represents a topic of increasing importance. Since modern technology in many working environments imposes ever more cognitive demands upon operators while physical demands diminish, understanding how MWL impinges on performance is increasingly critical. Yet, MWL is also one of the most nebulous concepts, with numerous definitions and dimensions associated with it. Moreover, MWL research has had a tendency to focus on complex, often safety-critical systems (e.g. transport, process control). Here we provide a general overview of the current state of affairs regarding the understanding, measurement and application of MWL in the design of complex systems over the last three decades. We conclude by discussing contemporary challenges for applied research, such as the interaction between cognitive workload and physical workload, and the quantification of workload ‘redlines’ which specify when operators are approachi...

578 citations

Journal ArticleDOI
TL;DR: A timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte−tracheophyte relationships, among other variables, on divergence time estimation is established.
Abstract: Establishing the timescale of early land plant evolution is essential for testing hypotheses on the coevolution of land plants and Earth's System. The sparseness of early land plant megafossils and stratigraphic controls on their distribution make the fossil record an unreliable guide, leaving only the molecular clock. However, the application of molecular clock methodology is challenged by the current impasse in attempts to resolve the evolutionary relationships among the living bryophytes and tracheophytes. Here, we establish a timescale for early land plant evolution that integrates over topological uncertainty by exploring the impact of competing hypotheses on bryophyte-tracheophyte relationships, among other variables, on divergence time estimation. We codify 37 fossil calibrations for Viridiplantae following best practice. We apply these calibrations in a Bayesian relaxed molecular clock analysis of a phylogenomic dataset encompassing the diversity of Embryophyta and their relatives within Viridiplantae. Topology and dataset sizes have little impact on age estimates, with greater differences among alternative clock models and calibration strategies. For all analyses, a Cambrian origin of Embryophyta is recovered with highest probability. The estimated ages for crown tracheophytes range from Late Ordovician to late Silurian. This timescale implies an early establishment of terrestrial ecosystems by land plants that is in close accord with recent estimates for the origin of terrestrial animal lineages. Biogeochemical models that are constrained by the fossil record of early land plants, or attempt to explain their impact, must consider the implications of a much earlier, middle Cambrian-Early Ordovician, origin.

573 citations

Journal ArticleDOI
TL;DR: Gondwana is reviewed from the unification of its several cratons in the Late Neoproterozoic, through its combination with Laurussia in the Carboniferous to form Pangea and up to its progressive fragmentation in the Mesozoic.

460 citations