scispace - formally typeset
Search or ask a question
Author

Marco W. Beijersbergen

Bio: Marco W. Beijersbergen is an academic researcher from Leiden University. The author has contributed to research in topics: X-ray optics & Telescope. The author has an hindex of 27, co-authored 101 publications receiving 11499 citations. Previous affiliations of Marco W. Beijersbergen include Kapteyn Astronomical Institute & University of Groningen.


Papers
More filters
Journal ArticleDOI
TL;DR: Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum and an astigmatic optical system may be used to transform a high-order LaguERre- Gaussian mode into aHigh-order Hermite-Gaussia mode reversibly.
Abstract: Laser light with a Laguerre-Gaussian amplitude distribution is found to have a well-defined orbital angular momentum. An astigmatic optical system may be used to transform a high-order Laguerre-Gaussian mode into a high-order Hermite-Gaussian mode reversibly. An experiment is proposed to measure the mechanical torque induced by the transfer of orbital angular momentum associated with such a transformation.

7,918 citations

Journal ArticleDOI
TL;DR: In this paper, a spiral phaseplate can convert a TEM00 laser beam into a helical wavefront beam with a phase singularity at its axis, and the diffractive-optical effect of the spiral phase plate is implemented by index matching a macroscopic structure in an optical immersion.

1,393 citations

Journal ArticleDOI
TL;DR: In this paper, a mode converter based on the Gouy phase was proposed to transform a Hermite-gaussian mode of arbitrarily high order to a Laguerre-Gaussian mode and vice versa.

1,275 citations

Journal ArticleDOI
TL;DR: A method to efficiently sort orbital angular momentum states of light using two static optical elements that perform a Cartesian to log-polar coordinate transformation, converting the helically phased light beam corresponding to OAM states into a beam with a transverse phase gradient.
Abstract: We present a method to efficiently sort orbital angular momentum (OAM) states of light using two static optical elements. The optical elements perform a Cartesian to log-polar coordinate transformation, converting the helically phased light beam corresponding to OAM states into a beam with a transverse phase gradient. A subsequent lens then focuses each input OAM state to a different lateral position. We demonstrate the concept experimentally by using two spatial light modulators to create the desired optical elements, applying it to the separation of eleven OAM states.

926 citations

Journal ArticleDOI
TL;DR: This method, based on a multipoint interferometer, has its most important application in measuring the orbital angular momentum of light from astronomical sources, opening the way to interesting new astrophysics.
Abstract: We present an efficient method for probing the orbital angular momentum of optical vortices of arbitrary sizes. This method, based on a multipoint interferometer, has its most important application in measuring the orbital angular momentum of light from astronomical sources, opening the way to interesting new astrophysics. We demonstrate its viability by measuring the orbital angular momentum of Laguerre-Gaussian laser beams.

240 citations


Cited by
More filters
Journal ArticleDOI
21 Oct 2011-Science
TL;DR: In this article, a two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint phase discontinuities on propagating light as it traverses the interface between two media.
Abstract: Conventional optical components rely on gradual phase shifts accumulated during light propagation to shape light beams. New degrees of freedom are attained by introducing abrupt phase changes over the scale of the wavelength. A two-dimensional array of optical resonators with spatially varying phase response and subwavelength separation can imprint such phase discontinuities on propagating light as it traverses the interface between two media. Anomalous reflection and refraction phenomena are observed in this regime in optically thin arrays of metallic antennas on silicon with a linear phase variation along the interface, which are in excellent agreement with generalized laws derived from Fermat’s principle. Phase discontinuities provide great flexibility in the design of light beams, as illustrated by the generation of optical vortices through use of planar designer metallic interfaces.

6,763 citations

Journal ArticleDOI
14 Aug 2003-Nature
TL;DR: This research presents the next generation of single-beam optical traps, which promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics and even become consumer products.
Abstract: Optical tweezers use the forces exerted by a strongly focused beam of light to trap and move objects ranging in size from tens of nanometres to tens of micrometres. Since their introduction in 1986, the optical tweezer has become an important tool for research in the fields of biology, physical chemistry and soft condensed matter physics. Recent advances promise to take optical tweezers out of the laboratory and into the mainstream of manufacturing and diagnostics; they may even become consumer products. The next generation of single-beam optical traps offers revolutionary new opportunities for fundamental and applied research.

4,647 citations

Journal ArticleDOI
TL;DR: In this paper, the authors demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum, which provides new opportunities for increasing the data capacity of free-space optical communications links.
Abstract: Researchers demonstrate the ability to multiplex and transfer data between twisted beams of light with different amounts of orbital angular momentum — a development that provides new opportunities for increasing the data capacity of free-space optical communications links.

3,556 citations

Journal ArticleDOI
19 Jul 2001-Nature
TL;DR: This work demonstrates entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum, which provides a practical route to entangled states that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography.
Abstract: Entangled quantum states are not separable, regardless of the spatial separation of their components This is a manifestation of an aspect of quantum mechanics known as quantum non-locality An important consequence of this is that the measurement of the state of one particle in a two-particle entangled state defines the state of the second particle instantaneously, whereas neither particle possesses its own well-defined state before the measurement Experimental realizations of entanglement have hitherto been restricted to two-state quantum systems, involving, for example, the two orthogonal polarization states of photons Here we demonstrate entanglement involving the spatial modes of the electromagnetic field carrying orbital angular momentum As these modes can be used to define an infinitely dimensional discrete Hilbert space, this approach provides a practical route to entanglement that involves many orthogonal quantum states, rather than just two Multi-dimensional entangled states could be of considerable importance in the field of quantum information, enabling, for example, more efficient use of communication channels in quantum cryptography

2,811 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that if every polarization vector rotates, the light has spin; if the phase structure rotates and if a light has orbital angular momentum (OAM), the light can be many times greater than the spin.
Abstract: As they travel through space, some light beams rotate. Such light beams have angular momentum. There are two particularly important ways in which a light beam can rotate: if every polarization vector rotates, the light has spin; if the phase structure rotates, the light has orbital angular momentum (OAM), which can be many times greater than the spin. Only in the past 20 years has it been realized that beams carrying OAM, which have an optical vortex along the axis, can be easily made in the laboratory. These light beams are able to spin microscopic objects, give rise to rotational frequency shifts, create new forms of imaging systems, and behave within nonlinear material to give new insights into quantum optics.

2,508 citations