scispace - formally typeset
Search or ask a question
Author

Marco W. Fraaije

Bio: Marco W. Fraaije is an academic researcher from University of Groningen. The author has contributed to research in topics: Flavin group & Phenylacetone monooxygenase. The author has an hindex of 67, co-authored 306 publications receiving 14330 citations. Previous affiliations of Marco W. Fraaije include Wageningen University and Research Centre & DSM.


Papers
More filters
Journal ArticleDOI
TL;DR: An inventory of known flavoprotein monooxygenases belonging to these different enzyme subclasses is provided and the biocatalytic potential of a selected number of flavop protein monooxyGENases is highlighted.

612 citations

Journal ArticleDOI
TL;DR: Modulation of substrate and cofactor reactivity and exact positioning of the substrate are key elements in the mode of action of these enzymes.

475 citations

Journal ArticleDOI
TL;DR: In this paper, an original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments, which shows structural resemblance to the cell and its organelles.
Abstract: Enzyme-filled polystyrene-b-poly(3-(isocyano-L-alanyl-aminoethyl)thiophene) (PS-b-PIAT) nanoreactors are encapsulated together with free enzymes and substrates in a larger polybutadiene-b-poly(ethylene oxide) (PB-b-PEO) polymersome, forming a multicompartmentalized structure, which shows structural resemblance to the cell and its organelles. An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments.

422 citations

Journal ArticleDOI
TL;DR: An overview of recent advances in the identification and use of bacterial enzymes acting on lignin or lignIn-derived products is provided, including DyP-type peroxidases and laccases.

393 citations

01 Jan 2013
TL;DR: An original cofactor-dependent three-enzyme cascade reaction is performed, using either compatible or incompatible enzymes, which takes place across multiple compartments.

385 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

01 Aug 2000
TL;DR: Assessment of medical technology in the context of commercialization with Bioentrepreneur course, which addresses many issues unique to biomedical products.
Abstract: BIOE 402. Medical Technology Assessment. 2 or 3 hours. Bioentrepreneur course. Assessment of medical technology in the context of commercialization. Objectives, competition, market share, funding, pricing, manufacturing, growth, and intellectual property; many issues unique to biomedical products. Course Information: 2 undergraduate hours. 3 graduate hours. Prerequisite(s): Junior standing or above and consent of the instructor.

4,833 citations

Journal ArticleDOI
TL;DR: To model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region and an MM treatment for the surroundings, enabling the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.
Abstract: Combined quantum-mechanics/molecular-mechanics (QM/MM) approaches have become the method of choice for modeling reactions in biomolecular systems. Quantum-mechanical (QM) methods are required for describing chemical reactions and other electronic processes, such as charge transfer or electronic excitation. However, QM methods are restricted to systems of up to a few hundred atoms. However, the size and conformational complexity of biopolymers calls for methods capable of treating up to several 100,000 atoms and allowing for simulations over time scales of tens of nanoseconds. This is achieved by highly efficient, force-field-based molecular mechanics (MM) methods. Thus to model large biomolecules the logical approach is to combine the two techniques and to use a QM method for the chemically active region (e.g., substrates and co-factors in an enzymatic reaction) and an MM treatment for the surroundings (e.g., protein and solvent). The resulting schemes are commonly referred to as combined or hybrid QM/MM methods. They enable the modeling of reactive biomolecular systems at a reasonable computational effort while providing the necessary accuracy.

2,172 citations