scispace - formally typeset
Search or ask a question
Author

Marcos A. R. Franco

Bio: Marcos A. R. Franco is an academic researcher from Instituto Tecnológico de Aeronáutica. The author has contributed to research in topics: Photonic-crystal fiber & Optical fiber. The author has an hindex of 15, co-authored 94 publications receiving 1080 citations. Previous affiliations of Marcos A. R. Franco include State University of Campinas & Aeronáutica.


Papers
More filters
Journal ArticleDOI
TL;DR: A new approach to evanescent field sensing is presented, in which both core and cladding are microstructured, in order to improve fibre sensing for low refractive index materials such as liquids and gases.
Abstract: The development of microstructured fibres offers the prospect of improved fibre sensing for low refractive index materials such as liquids and gases. A number of approaches are possible. Here we present a new approach to evanescent field sensing, in which both core and cladding are microstructured. The fibre was fabricated and tested, and simulations and experimental results are shown in the visible region to demonstrate the utility of this approach for sensing.

246 citations

Journal ArticleDOI
TL;DR: The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode-multimode-single-mode (SMS)-based fiber structure to extend the range of liquids with a detectable RI to above 1.43.
Abstract: The proposed sensing device relies on the self-imaging effect that occurs in a pure silica multimode fiber (coreless MMF) section of a single-mode–multimode–single-mode (SMS)-based fiber structure. The influence of the coreless-MMF diameter on the external refractive index (RI) variation permitted the sensing head with the lowest MMF diameter (i.e., 55 μm) to exhibit the maximum sensitivity (2800 nm/RIU). This approach also implied an ultrahigh sensitivity of this fiber device to temperature variations in the liquid RI of 1.43: a maximum sensitivity of −1880 pm/°C was indeed attained. Therefore, the results produced were over 100-fold those of the typical value of approximately 13 pm/°C achieved in air using a similar device. Numerical analysis of an evanescent wave absorption sensor was performed, in order to extend the range of liquids with a detectable RI to above 1.43. The suggested model is an SMS fiber device where a polymer coating, with an RI as low as 1.3, is deposited over the coreless MMF; numerical results are presented pertaining to several polymer thicknesses in terms of external RI variation.

119 citations

Journal ArticleDOI
TL;DR: This manuscript examines various optical fiber types including tube fibers, solid core fiber, hollow-core photonic bandgap, anti-resonant fibers, porous-core fibers, metamaterial-based fibers, and their guiding mechanisms for terahertz waveguides.
Abstract: Lying between optical and microwave ranges, the terahertz band in the electromagnetic spectrum is attracting increased attention. Optical fibers are essential for developing the full potential of complex terahertz systems. In this manuscript, we review the optimal materials, the guiding mechanisms, the fabrication methodologies, the characterization methods and the applications of such terahertz waveguides. We examine various optical fiber types including tube fibers, solid core fiber, hollow-core photonic bandgap, anti-resonant fibers, porous-core fibers, metamaterial-based fibers, and their guiding mechanisms. The optimal materials for terahertz applications are discussed. The past and present trends of fabrication methods, including drilling, stacking, extrusion and 3D printing, are elaborated. Fiber characterization methods including different optics for terahertz time-domain spectroscopy (THz-TDS) setups are reviewed and application areas including short-distance data transmission, imaging, sensing, and spectroscopy are discussed.

80 citations

Journal ArticleDOI
TL;DR: The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42-1.43 was attained.
Abstract: Real-time monitoring of the fabrication process of tapering down a multimode-interference-based fiber structure is presented. The device is composed of a pure silica multimode fiber (MMF) with an initial 125 μm diameter spliced between two single-mode fibers. The process allows a thin MMF with adjustable parameters to obtain a high signal transmittance, arising from constructive interference among the guided modes at the output end of the MMF. Tapered structures with waist diameters as low as 55 μm were easily fabricated without the limitation of fragile splices or difficulty in controlling lateral fiber alignments. The sensing device is shown to be sensitive to the external environment, and a maximum sensitivity of 2946 nm/refractive index unit in the refractive index range of 1.42–1.43 was attained.

72 citations

Journal ArticleDOI
21 Jun 2018-Fibers
TL;DR: In this paper, a review of 3D printed hollow-core fibers for the propagation of terahertz (THz) waves is presented, highlighting the advantages of using 3D printers as a path to make the fabrication of complex 3D fiber structures fast and cost-effective.
Abstract: This paper reviews the subject of 3D printed hollow-core fibers for the propagation of terahertz (THz) waves. Several hollow and microstructured core fibers have been proposed in the literature as candidates for low-loss terahertz guidance. In this review, we focus on 3D printed hollow-core fibers with designs that cannot be easily created by conventional fiber fabrication techniques. We first review the fibers according to their guiding mechanism: photonic bandgap, antiresonant effect, and Bragg effect. We then present the modeling, fabrication, and characterization of a 3D printed Bragg and two antiresonant fibers, highlighting the advantages of using 3D printers as a path to make the fabrication of complex 3D fiber structures fast and cost-effective.

68 citations


Cited by
More filters
Book ChapterDOI
27 Jan 2010

878 citations

Journal ArticleDOI
TL;DR: Recently developed micro-and nano-structured optical fiber sensors, with particular reference to surface plasmon resonance (SPR) fiber sensors and photonic crystal fiber (PCF) sensors are reviewed in this article.

354 citations

Journal ArticleDOI
TL;DR: In this paper, the phase matching between a plasmon and a core mode can be enforced by introducing air-filled microstructures into the fiber core, where the effective refractive index can be lowered to match that of a plasmus by introducing a small central hole into the fibre core.
Abstract: Design strategies for microstructured-optical-fiber (MOF-) based surface-plasmon-resonance (SPR) sensors are presented. In such sensors, plasmons on the inner surface of the large metallized channels containing analyte can be excited by a fundamental mode of a single-mode microstructured fiber. Phase matching between a plasmon and a core mode can be enforced by introducing air-filled microstructures into the fiber core. Particularly, in its simplest implementation, the effective refractive index of a fundamental mode can be lowered to match that of a plasmon by introducing a small central hole into the fiber core. Resolution of the MOF-based sensors is demonstrated to be as low as 3×10−5 RIU, where RIU means refractive index unit. The ability to integrate large-size microfluidic channels for efficient analyte flow together with a single-mode waveguide of designable modal refractive index is attractive for the development of integrated highly sensitive MOF-SPR sensors operating at any designable wavelength.

261 citations

Journal ArticleDOI
TL;DR: A review of photonic crystal fiber sensors is presented; two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter.
Abstract: Photonic crystal fibers are a kind of fiber optics that present a diversity of new and improved features beyond what conventional optical fibers can offer. Due to their unique geometric structure, photonic crystal fibers present special properties and capabilities that lead to an outstanding potential for sensing applications. A review of photonic crystal fiber sensors is presented. Two different groups of sensors are detailed separately: physical and biochemical sensors, based on the sensor measured parameter. Several sensors have been reported until the date, and more are expected to be developed due to the remarkable characteristics such fibers can offer.

235 citations

Journal ArticleDOI
TL;DR: A review of optical fiber sensing demonstrations based on photonic crystal fibers is presented in this paper, which is orga- nized in five main sections: the first three deal with sensing approaches relying on fiber Bragg gratings, long-period gratings and interferometric structures; the fourth one reports applica- tions of these fibers for gas and liquid sensing; the last section focuses on the exploitation of nonlinear effects in pho- tonic crystal fibers for sensing.
Abstract: A review of optical fiber sensing demonstrations based on photonic crystal fibers is presented. The text is orga- nized in five main sections: the first three deal with sensing approaches relying on fiber Bragg gratings, long-period gratings and interferometric structures; the fourth one reports applica- tions of these fibers for gas and liquid sensing; finally, the last section focuses on the exploitation of nonlinear effects in pho- tonic crystal fibers for sensing. A brief review about splicing with photonic crystal fibers is also included.

232 citations