scispace - formally typeset
Search or ask a question
Author

Marcus C. Chibucos

Bio: Marcus C. Chibucos is an academic researcher from University of Maryland, Baltimore. The author has contributed to research in topics: Ontology (information science) & Annotation. The author has an hindex of 27, co-authored 45 publications receiving 6660 citations. Previous affiliations of Marcus C. Chibucos include Virginia Tech & Virginia Bioinformatics Institute.

Papers
More filters
Journal ArticleDOI
Seth Carbon1, Eric Douglass1, Nathan Dunn1, Benjamin M. Good1  +189 moreInstitutions (19)
TL;DR: GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models.
Abstract: The Gene Ontology resource (GO; http://geneontology.org) provides structured, computable knowledge regarding the functions of genes and gene products. Founded in 1998, GO has become widely adopted in the life sciences, and its contents are under continual improvement, both in quantity and in quality. Here, we report the major developments of the GO resource during the past two years. Each monthly release of the GO resource is now packaged and given a unique identifier (DOI), enabling GO-based analyses on a specific release to be reproduced in the future. The molecular function ontology has been refactored to better represent the overall activities of gene products, with a focus on transcription regulator activities. Quality assurance efforts have been ramped up to address potentially out-of-date or inaccurate annotations. New evidence codes for high-throughput experiments now enable users to filter out annotations obtained from these sources. GO-CAM, a new framework for representing gene function that is more expressive than standard GO annotations, has been released, and users can now explore the growing repository of these models. We also provide the ‘GO ribbon’ widget for visualizing GO annotations to a gene; the widget can be easily embedded in any web page.

2,138 citations

Journal ArticleDOI
TL;DR: A historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations is made available to maintain consistency with other ontologies.
Abstract: The Gene Ontology Consortium (GOC) provides the most comprehensive resource currently available for computable knowledge regarding the functions of genes and gene products. Here, we report the advances of the consortium over the past two years. The new GO-CAM annotation framework was notably improved, and we formalized the model with a computational schema to check and validate the rapidly increasing repository of 2838 GO-CAMs. In addition, we describe the impacts of several collaborations to refine GO and report a 10% increase in the number of GO annotations, a 25% increase in annotated gene products, and over 9,400 new scientific articles annotated. As the project matures, we continue our efforts to review older annotations in light of newer findings, and, to maintain consistency with other ontologies. As a result, 20 000 annotations derived from experimental data were reviewed, corresponding to 2.5% of experimental GO annotations. The website (http://geneontology.org) was redesigned for quick access to documentation, downloads and tools. To maintain an accurate resource and support traceability and reproducibility, we have made available a historical archive covering the past 15 years of GO data with a consistent format and file structure for both the ontology and annotations.

1,988 citations

Journal ArticleDOI
Brian J. Haas1, Sophien Kamoun2, Sophien Kamoun3, Michael C. Zody1, Michael C. Zody4, Rays H. Y. Jiang1, Rays H. Y. Jiang5, Robert E. Handsaker1, Liliana M. Cano2, Manfred Grabherr1, Chinnappa D. Kodira1, Chinnappa D. Kodira6, Sylvain Raffaele2, Trudy Torto-Alalibo3, Trudy Torto-Alalibo6, Tolga O. Bozkurt2, Audrey M. V. Ah-Fong7, Lucia Alvarado1, Vicky L. Anderson8, Miles R. Armstrong9, Anna O. Avrova9, Laura Baxter10, Jim Beynon10, Petra C. Boevink9, Stephanie R. Bollmann11, Jorunn I. B. Bos3, Vincent Bulone12, Guohong Cai13, Cahid Cakir3, James C. Carrington14, Megan Chawner15, Lucio Conti16, Stefano Costanzo11, Richard Ewan16, Noah Fahlgren14, Michael A. Fischbach17, Johanna Fugelstad12, Eleanor M. Gilroy9, Sante Gnerre1, Pamela J. Green18, Laura J. Grenville-Briggs8, John Griffith15, Niklaus J. Grünwald11, Karolyn Horn15, Neil R. Horner8, Chia-Hui Hu19, Edgar Huitema3, Dong-Hoon Jeong18, Alexandra M. E. Jones2, Jonathan D. G. Jones2, Richard W. Jones11, Elinor K. Karlsson1, Sridhara G. Kunjeti20, Kurt Lamour21, Zhenyu Liu3, Li-Jun Ma1, Dan MacLean2, Marcus C. Chibucos22, Hayes McDonald23, Jessica McWalters15, Harold J. G. Meijer5, William Morgan24, Paul Morris25, Carol A. Munro8, Keith O'Neill6, Keith O'Neill1, Manuel D. Ospina-Giraldo15, Andrés Pinzón, Leighton Pritchard9, Bernard H Ramsahoye26, Qinghu Ren27, Silvia Restrepo, Sourav Roy7, Ari Sadanandom16, Alon Savidor28, Sebastian Schornack2, David C. Schwartz29, Ulrike Schumann8, Ben Schwessinger2, Lauren Seyer15, Ted Sharpe1, Cristina Silvar2, Jing Song3, David J. Studholme2, Sean M. Sykes1, Marco Thines30, Marco Thines2, Peter J. I. van de Vondervoort5, Vipaporn Phuntumart25, Stephan Wawra8, R. Weide5, Joe Win2, Carolyn A. Young3, Shiguo Zhou29, William E. Fry13, Blake C. Meyers18, Pieter van West8, Jean B. Ristaino19, Francine Govers5, Paul R. J. Birch31, Stephen C. Whisson9, Howard S. Judelson7, Chad Nusbaum1 
17 Sep 2009-Nature
TL;DR: The sequence of the P. infestans genome is reported, which at ∼240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates and probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.
Abstract: Phytophthora infestans is the most destructive pathogen of potato and a model organism for the oomycetes, a distinct lineage of fungus-like eukaryotes that are related to organisms such as brown algae and diatoms. As the agent of the Irish potato famine in the mid-nineteenth century, P. infestans has had a tremendous effect on human history, resulting in famine and population displacement(1). To this day, it affects world agriculture by causing the most destructive disease of potato, the fourth largest food crop and a critical alternative to the major cereal crops for feeding the world's population(1). Current annual worldwide potato crop losses due to late blight are conservatively estimated at $6.7 billion(2). Management of this devastating pathogen is challenged by its remarkable speed of adaptation to control strategies such as genetically resistant cultivars(3,4). Here we report the sequence of the P. infestans genome, which at similar to 240 megabases (Mb) is by far the largest and most complex genome sequenced so far in the chromalveolates. Its expansion results from a proliferation of repetitive DNA accounting for similar to 74% of the genome. Comparison with two other Phytophthora genomes showed rapid turnover and extensive expansion of specific families of secreted disease effector proteins, including many genes that are induced during infection or are predicted to have activities that alter host physiology. These fast-evolving effector genes are localized to highly dynamic and expanded regions of the P. infestans genome. This probably plays a crucial part in the rapid adaptability of the pathogen to host plants and underpins its evolutionary potential.

1,341 citations

Journal ArticleDOI
Judith A. Blake, Mary E. Dolan, H. Drabkin, David P. Hill, Li N, D. Sitnikov, Susan M. Bridges1, Shane C. Burgess1, Teresia Buza1, Fiona M. McCarthy1, Divyaswetha Peddinti1, Lakshmi Pillai1, Seth Carbon2, Heiko Dietze2, Amelia Ireland2, Suzanna E. Lewis2, Christopher J. Mungall2, Pascale Gaudet3, Chrisholm Rl3, Petra Fey3, Warren A. Kibbe3, S. Basu3, Deborah A. Siegele4, B. K. McIntosh4, Daniel P. Renfro4, Adrienne E. Zweifel4, James C. Hu4, Nicholas H. Brown5, Susan Tweedie5, Yasmin Alam-Faruque6, Rolf Apweiler6, A. Auchinchloss6, Kristian B. Axelsen6, Benoit Bely6, M. C. Blatter6, Bonilla C6, Bouguerleret L6, Emmanuel Boutet6, Lionel Breuza6, Alan Bridge6, W. M. Chan6, Gayatri Chavali6, Elisabeth Coudert6, E. Dimmer6, Anne Estreicher6, L Famiglietti6, Marc Feuermann6, Arnaud Gos6, Nadine Gruaz-Gumowski6, Hieta R6, Hinz C6, Chantal Hulo6, Rachael P. Huntley6, J. James6, Florence Jungo6, Guillaume Keller6, Kati Laiho6, Duncan Legge6, P. Lemercier6, Damien Lieberherr6, Michele Magrane6, Maria Jesus Martin6, Patrick Masson6, Mutowo-Muellenet P6, Claire O'Donovan6, Ivo Pedruzzi6, Klemens Pichler6, Diego Poggioli6, Porras Millán P6, Sylvain Poux6, Catherine Rivoire6, Bernd Roechert6, Tony Sawford6, Michel Schneider6, Andre Stutz6, Shyamala Sundaram6, Michael Tognolli6, Ioannis Xenarios6, Foulgar R, Jane Lomax, Paola Roncaglia, Varsha K. Khodiyar7, Ruth C. Lovering7, Philippa J. Talmud7, Marcus C. Chibucos8, Giglio Mg9, Hsin-Yu Chang9, Sarah Hunter9, Craig McAnulla9, Alex L. Mitchell9, Sangrador A9, Stephan R, Midori A. Harris5, Stephen G. Oliver5, Kim Rutherford5, Wood7, Jürg Bähler7, Antonia Lock7, Paul J. Kersey9, McDowall Dm9, Daniel M. Staines9, Melinda R. Dwinell10, Mary Shimoyama10, Stan Laulederkind10, Tom Hayman10, Shur-Jen Wang10, Timothy F. Lowry10, P D'Eustachio11, Lisa Matthews11, Rama Balakrishnan12, Gail Binkley12, J. M. Cherry12, Maria C. Costanzo12, Selina S. Dwight12, Engel12, Dianna G. Fisk12, Benjamin C. Hitz12, Eurie L. Hong12, Kalpana Karra12, Miyasato12, Robert S. Nash12, Julie Park12, Marek S. Skrzypek12, Shuai Weng12, Edith D. Wong12, Tanya Z. Berardini13, Eva Huala13, Huaiyu Mi14, Paul Thomas14, Juancarlos Chan15, Ranjana Kishore15, Paul W. Sternberg15, Van Auken K15, Doug Howe16, Monte Westerfield16 
TL;DR: The Gene Ontology (GO) Consortium is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies and has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology.
Abstract: The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources.

492 citations

Journal ArticleDOI
10 Dec 2010-Science
TL;DR: The genome sequence of the oomycete Hyaloperonospora arabidopsidis is reported, an obligate biotroph and natural pathogen of Arabidopsis thaliana, which exhibits dramatic reductions in genes encoding RXLR effectors, proteins associated with zoospore formation and motility, and enzymes for assimilation of inorganic nitrogen and sulfur.
Abstract: Many oomycete and fungal plant pathogens are obligate biotrophs, which extract nutrients only from living plant tissue and cannot grow apart from their hosts. Although these pathogens cause substantial crop losses, little is known about the molecular basis or evolution of obligate biotrophy. Here, we report the genome sequence of the oomycete Hyaloperonospora arabidopsidis (Hpa), an obligate biotroph and natural pathogen of Arabidopsis thaliana. In comparison with genomes of related, hemibiotrophic Phytophthora species, the Hpa genome exhibits dramatic reductions in genes encoding (i) RXLR effectors and other secreted pathogenicity proteins, (ii) enzymes for assimilation of inorganic nitrogen and sulfur, and (iii) proteins associated with zoospore formation and motility. These attributes comprise a genomic signature of evolution toward obligate biotrophy.

424 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The Reactome Knowledgebase provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations—an extended version of a classic metabolic map, in a single consistent data model.
Abstract: The Reactome Knowledgebase (www.reactome.org) provides molecular details of signal transduction, transport, DNA replication, metabolism and other cellular processes as an ordered network of molecular transformations-an extended version of a classic metabolic map, in a single consistent data model. Reactome functions both as an archive of biological processes and as a tool for discovering unexpected functional relationships in data such as gene expression pattern surveys or somatic mutation catalogues from tumour cells. Over the last two years we redeveloped major components of the Reactome web interface to improve usability, responsiveness and data visualization. A new pathway diagram viewer provides a faster, clearer interface and smooth zooming from the entire reaction network to the details of individual reactions. Tool performance for analysis of user datasets has been substantially improved, now generating detailed results for genome-wide expression datasets within seconds. The analysis module can now be accessed through a RESTFul interface, facilitating its inclusion in third party applications. A new overview module allows the visualization of analysis results on a genome-wide Reactome pathway hierarchy using a single screen page. The search interface now provides auto-completion as well as a faceted search to narrow result lists efficiently.

5,065 citations

Journal ArticleDOI
Alex Bateman, Maria Jesus Martin, Sandra Orchard, Michele Magrane, Rahat Agivetova, Shadab Ahmad, Emanuele Alpi, Emily H Bowler-Barnett, Ramona Britto, Borisas Bursteinas, Hema Bye-A-Jee, Ray Coetzee, Austra Cukura, Alan Wilter Sousa da Silva, Paul Denny, Tunca Doğan, ThankGod Ebenezer, Jun Fan, Leyla Jael Garcia Castro, Penelope Garmiri, George Georghiou, Leonardo Gonzales, Emma Hatton-Ellis, Abdulrahman Hussein, Alexandr Ignatchenko, Giuseppe Insana, Rizwan Ishtiaq, Petteri Jokinen, Vishal Joshi, Dushyanth Jyothi, Antonia Lock, Rodrigo Lopez, Aurelien Luciani, Jie Luo, Yvonne Lussi, Alistair MacDougall, Fábio Madeira, Mahdi Mahmoudy, Manuela Menchi, Alok Mishra, Katie Moulang, Andrew Nightingale, Carla Susana Oliveira, Sangya Pundir, Guoying Qi, Shriya Raj, Daniel Rice, Milagros Rodriguez Lopez, Rabie Saidi, Joseph Sampson, Tony Sawford, Elena Speretta, Edward Turner, Nidhi Tyagi, Preethi Vasudev, Vladimir Volynkin, Kate Warner, Xavier Watkins, Rossana Zaru, Hermann Zellner, Alan Bridge, Sylvain Poux, Nicole Redaschi, Lucila Aimo, Ghislaine Argoud-Puy, Andrea H. Auchincloss, Kristian B. Axelsen, Parit Bansal, Delphine Baratin, Marie-Claude Blatter, Jerven Bolleman, Emmanuel Boutet, Lionel Breuza, Cristina Casals-Casas, Edouard de Castro, Kamal Chikh Echioukh, Elisabeth Coudert, Béatrice A. Cuche, M Doche, Dolnide Dornevil, Anne Estreicher, Maria Livia Famiglietti, Marc Feuermann, Elisabeth Gasteiger, Sebastien Gehant, Vivienne Baillie Gerritsen, Arnaud Gos, Nadine Gruaz-Gumowski, Ursula Hinz, Chantal Hulo, Nevila Hyka-Nouspikel, Florence Jungo, Guillaume Keller, Arnaud Kerhornou, Vicente Lara, Philippe Le Mercier, Damien Lieberherr, Thierry Lombardot, Xavier D. Martin, Patrick Masson, Anne Morgat, Teresa Batista Neto, Salvo Paesano, Ivo Pedruzzi, Sandrine Pilbout, Lucille Pourcel, Monica Pozzato, Manuela Pruess, Catherine Rivoire, Christian J. A. Sigrist, K Sonesson, Andre Stutz, Shyamala Sundaram, Michael Tognolli, Laure Verbregue, Cathy H. Wu, Cecilia N. Arighi, Leslie Arminski, Chuming Chen, Yongxing Chen, John S. Garavelli, Hongzhan Huang, Kati Laiho, Peter B. McGarvey, Darren A. Natale, Karen E. Ross, C. R. Vinayaka, Qinghua Wang, Yuqi Wang, Lai-Su L. Yeh, Jian Zhang, Patrick Ruch, Douglas Teodoro 
TL;DR: The UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal and a credit-based publication submission interface was developed.
Abstract: Abstract The aim of the UniProt Knowledgebase is to provide users with a comprehensive, high-quality and freely accessible set of protein sequences annotated with functional information. In this article, we describe significant updates that we have made over the last two years to the resource. The number of sequences in UniProtKB has risen to approximately 190 million, despite continued work to reduce sequence redundancy at the proteome level. We have adopted new methods of assessing proteome completeness and quality. We continue to extract detailed annotations from the literature to add to reviewed entries and supplement these in unreviewed entries with annotations provided by automated systems such as the newly implemented Association-Rule-Based Annotator (ARBA). We have developed a credit-based publication submission interface to allow the community to contribute publications and annotations to UniProt entries. We describe how UniProtKB responded to the COVID-19 pandemic through expert curation of relevant entries that were rapidly made available to the research community through a dedicated portal. UniProt resources are available under a CC-BY (4.0) license via the web at https://www.uniprot.org/.

4,001 citations

Journal ArticleDOI
TL;DR: Changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks are described.
Abstract: Cellular life depends on a complex web of functional associations between biomolecules. Among these associations, protein-protein interactions are particularly important due to their versatility, specificity and adaptability. The STRING database aims to integrate all known and predicted associations between proteins, including both physical interactions as well as functional associations. To achieve this, STRING collects and scores evidence from a number of sources: (i) automated text mining of the scientific literature, (ii) databases of interaction experiments and annotated complexes/pathways, (iii) computational interaction predictions from co-expression and from conserved genomic context and (iv) systematic transfers of interaction evidence from one organism to another. STRING aims for wide coverage; the upcoming version 11.5 of the resource will contain more than 14 000 organisms. In this update paper, we describe changes to the text-mining system, a new scoring-mode for physical interactions, as well as extensive user interface features for customizing, extending and sharing protein networks. In addition, we describe how to query STRING with genome-wide, experimental data, including the automated detection of enriched functionalities and potential biases in the user's query data. The STRING resource is available online, at https://string-db.org/.

3,253 citations

Journal ArticleDOI
TL;DR: The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant–pathogen interaction from the perspective of both organisms, suggesting novel biotechnological approaches to crop protection.
Abstract: Plants are engaged in a continuous co-evolutionary struggle for dominance with their pathogens. The outcomes of these interactions are of particular importance to human activities, as they can have dramatic effects on agricultural systems. The recent convergence of molecular studies of plant immunity and pathogen infection strategies is revealing an integrated picture of the plant-pathogen interaction from the perspective of both organisms. Plants have an amazing capacity to recognize pathogens through strategies involving both conserved and variable pathogen elicitors, and pathogens manipulate the defence response through secretion of virulence effector molecules. These insights suggest novel biotechnological approaches to crop protection.

2,666 citations