scispace - formally typeset
Search or ask a question
Author

Marcus Huber

Bio: Marcus Huber is an academic researcher from Austrian Academy of Sciences. The author has contributed to research in topics: Quantum entanglement & Quantum. The author has an hindex of 48, co-authored 201 publications receiving 7827 citations. Previous affiliations of Marcus Huber include University of Vienna & University of Geneva.


Papers
More filters
Journal ArticleDOI
TL;DR: This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems, including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines.
Abstract: This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world.

584 citations

Journal ArticleDOI
TL;DR: In this paper, an overview of the interplay between quantum information theory and thermodynamics of quantum systems is presented. But this is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist.
Abstract: This topical review article gives an overview of the interplay between quantum information theory and thermodynamics of quantum systems. We focus on several trending topics including the foundations of statistical mechanics, resource theories, entanglement in thermodynamic settings, fluctuation theorems and thermal machines. This is not a comprehensive review of the diverse field of quantum thermodynamics; rather, it is a convenient entry point for the thermo-curious information theorist. Furthermore this review should facilitate the unification and understanding of different interdisciplinary approaches emerging in research groups around the world.

517 citations

Journal ArticleDOI
TL;DR: A novel nonlinear criterion is developed which infers entanglement dimensionality of a global state by using only information about its subspace correlations, which allows very practical experimental implementation as well as highly efficient extraction of entanglements dimensionality information.
Abstract: Entangled quantum systems have properties that have fundamentally overthrown the classical worldview. Increasing the complexity of entangled states by expanding their dimensionality allows the implementation of novel fundamental tests of nature, and moreover also enables genuinely new protocols for quantum information processing. Here we present the creation of a (100 × 100)-dimensional entangled quantum system, using spatial modes of photons. For its verification we develop a novel nonlinear criterion which infers entanglement dimensionality of a global state by using only information about its subspace correlations. This allows very practical experimental implementation as well as highly efficient extraction of entanglement dimensionality information. Applications in quantum cryptography and other protocols are very promising.

345 citations

Journal ArticleDOI
TL;DR: In this paper, a three-photon entangled state with 3 × 3 × 2 dimensions of its orbital angular momentum is created by using two independent entangled photon pairs from two nonlinear crystals, enabling the development of a new layered quantum communication protocol.
Abstract: A three-photon entangled state with 3 × 3 × 2 dimensions of its orbital angular momentum is created by using two independent entangled photon pairs from two nonlinear crystals, enabling the development of a new layered quantum communication protocol. Forming the backbone of quantum technologies today, entanglement1,2 has been demonstrated in physical systems as diverse as photons3, ions4 and superconducting circuits5. Although steadily pushing the boundary of the number of particles entangled, these experiments have remained in a two-dimensional space for each particle. Here we show the experimental generation of the first multi-photon entangled state where both the number of particles and dimensions are greater than two. Two photons in our state reside in a three-dimensional space, whereas the third lives in two dimensions. This asymmetric entanglement structure6 only appears in multiparticle entangled states with d > 26. Our method relies on combining two pairs of photons, high-dimensionally entangled in their orbital angular momentum7. In addition, we show how this state enables a new type of ‘layered’ quantum communication protocol. Entangled states such as these serve as a manifestation of the complex dance of correlations that can exist within quantum mechanics.

289 citations

Journal ArticleDOI
01 Jan 2019
TL;DR: The most commonly used quantifiers of entanglement are discussed and the state-of-the-art detection and certification methods are surveyed, including their respective underlying assumptions, from both a theoretical and an experimental point of view.
Abstract: Entanglement is an important resource for quantum technologies. There are many ways quantum systems can be entangled, ranging from the two-qubit case to entanglement in high dimensions or between many parties. Consequently, many entanglement quantifiers and classifiers exist, corresponding to different operational paradigms and mathematical techniques. However, for most quantum systems, exactly quantifying the amount of entanglement is extremely demanding, if at all possible. Furthermore, it is difficult to experimentally control and measure complex quantum states. Therefore, there are various approaches to experimentally detect and certify entanglement when exact quantification is not an option. The applicability and performance of these methods strongly depend on the assumptions regarding the involved quantum states and measurements, in short, on the available prior information about the quantum system. In this Review, we discuss the most commonly used quantifiers of entanglement and survey the state-of-the-art detection and certification methods, including their respective underlying assumptions, from both a theoretical and an experimental point of view. Entanglement is often considered the defining feature separating classical physics from quantum physics and provides the basis for many quantum technologies. This Review discusses recent progress in the challenging task of conclusively proving that a physical system features entanglement, surveying detection and certification methods.

250 citations


Cited by
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: In this paper, the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems is discussed.
Abstract: We give a general introduction to quantum phase transitions in strongly-correlated electron systems. These transitions which occur at zero temperature when a non-thermal parameter $g$ like pressure, chemical composition or magnetic field is tuned to a critical value are characterized by a dynamic exponent $z$ related to the energy and length scales $\Delta$ and $\xi$. Simple arguments based on an expansion to first order in the effective interaction allow to define an upper-critical dimension $D_{C}=4$ (where $D=d+z$ and $d$ is the spatial dimension) below which mean-field description is no longer valid. We emphasize the role of pertubative renormalization group (RG) approaches and self-consistent renormalized spin fluctuation (SCR-SF) theories to understand the quantum-classical crossover in the vicinity of the quantum critical point with generalization to the Kondo effect in heavy-fermion systems. Finally we quote some recent inelastic neutron scattering experiments performed on heavy-fermions which lead to unusual scaling law in $\omega /T$ for the dynamical spin susceptibility revealing critical local modes beyond the itinerant magnetism scheme and mention new attempts to describe this local quantum critical point.

1,347 citations