scispace - formally typeset
Search or ask a question
Author

Marcus L. Young

Bio: Marcus L. Young is an academic researcher from University of North Texas. The author has contributed to research in topics: Shape-memory alloy & Nickel titanium. The author has an hindex of 19, co-authored 89 publications receiving 1854 citations. Previous affiliations of Marcus L. Young include Oregon State University & Ruhr University Bochum.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the lattice parameters of quaternary shape memory alloys and the thermal hysteresis were tailored by using a thin-film composition-spread technique and high-throughput characterization methods.
Abstract: Improving the functional stability of shape memory alloys (SMAs), which undergo a reversible martensitic transformation, is critical for their applications and remains a central research theme driving advances in shape memory technology. By using a thin-film composition-spread technique and high-throughput characterization methods, the lattice parameters of quaternary Ti-Ni-Cu-Pd SMAs and the thermal hysteresis are tailored. Novel alloys with near-zero thermal hysteresis, as predicted by the geometric nonlinear theory of martensite, are identified. The thin-film results are successfully transferred to bulk materials and near-zero thermal hysteresis is observed for the phase transformation in bulk alloys using the temperature-dependent alternating current potential drop method. A universal behavior of hysteresis versus the middle eigenvalue of the transformation stretch matrix is observed for different alloy systems. Furthermore, significantly improved functional stability, investigated by thermal cycling using differential scanning calorimetry, is found for the quaternary bulk alloy Ti 50.2 Ni 34.4 Cu 12.3 Pd 3.1 .

303 citations

Journal ArticleDOI
TL;DR: By tuning the presence of structural heterogeneity in textured Co(1-x)Fe(x) thin films, effective magnetostriction λ(eff) as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT, indicating that the recently proposed heterogeneous magnetostrict mechanism can be used to guide exploration of compounds with unusual magnetoelastic properties.
Abstract: Chemical and structural heterogeneity and the resulting interaction of coexisting phases can lead to extraordinary behaviours in oxides, as observed in piezoelectric materials at morphotropic phase boundaries and relaxor ferroelectrics. However, such phenomena are rare in metallic alloys. Here we show that, by tuning the presence of structural heterogeneity in textured Co(1-x)Fe(x) thin films, effective magnetostriction λ(eff) as large as 260 p.p.m. can be achieved at low-saturation field of ~10 mT. Assuming λ(100) is the dominant component, this number translates to an upper limit of magnetostriction of λ(100)≈5λ(eff) >1,000 p.p.m. Microstructural analyses of Co(1-x)Fe(x) films indicate that maximal magnetostriction occurs at compositions near the (fcc+bcc)/bcc phase boundary and originates from precipitation of an equilibrium Co-rich fcc phase embedded in a Fe-rich bcc matrix. The results indicate that the recently proposed heterogeneous magnetostriction mechanism can be used to guide exploration of compounds with unusual magnetoelastic properties.

184 citations

Journal ArticleDOI
TL;DR: In this paper, an ultrafine-grained pseudoelastic NiTi shape-memory alloy wire with 50.9% Ni was examined using synchrotron X-ray diffraction during in situ uniaxial tensile loading (up to 1 GPa) and unloading.

149 citations

Journal ArticleDOI
TL;DR: The biological responses of human bone marrow mesenchymal stem cells (hMSC) to Zn and the underlying cellular signaling mechanisms are studied and small RNA interference to knockdown related key molecules are illustrated to illustrated the mechanisms of Zn-induced cellular signaling.
Abstract: Zn biomaterials attract strong attentions recently for load-bearing medical implants because of their mechanical properties similar to bone, biocompatibility, and degradability at a more matched rate to tissue healing. It has been shown previously that Zn alloys are beneficial for bone regeneration, but the supporting mechanisms have not been explored in detail. Here, we studied the biological responses of human bone marrow mesenchymal stem cells (hMSC) to Zn and the underlying cellular signaling mechanisms. Typical Mg material AZ31 was used as a comparative benchmark control. Direct culture of cells on the materials revealed that cell adhesion, proliferation, and motility were higher on Zn than on AZ31. Significant cytoskeletal reorganizations induced by Zn or AZ31 were also observed. Mineralization of extracellular matrix (ECM) and hMSC osteogenic differentiation, measured by Alizarin red and ALP staining and activities, were significantly enhanced when cells were cultured with Zn or AZ31. Quantitative ...

148 citations

Journal ArticleDOI
TL;DR: In this article, cracks propagate at similar stress intensities of 30 ± 5 MPa m into martensite and pseudoelastic austenite in both materials, and a miniature CT specimen was developed, which yields reliable critical fracture mechanics parameters.

148 citations


Cited by
More filters
01 Jan 2007
TL;DR: The Third edition of the Kirk-Othmer encyclopedia of chemical technology as mentioned in this paper was published in 1989, with the title "Kirk's Encyclopedia of Chemical Technology: Chemical Technology".
Abstract: 介绍了Kirk—Othmer Encyclopedia of Chemical Technology(化工技术百科全书)(第五版)电子图书网络版数据库,并对该数据库使用方法和检索途径作出了说明,且结合实例简单地介绍了该数据库的检索方法。

2,666 citations

01 Sep 1955
TL;DR: In this paper, the authors restrict their attention to the ferrites and a few other closely related materials, which are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present.
Abstract: In this chapter, we will restrict our attention to the ferrites and a few other closely related materials. The great interest in ferrites stems from their unique combination of a spontaneous magnetization and a high electrical resistivity. The observed magnetization results from the difference in the magnetizations of two non-equivalent sub-lattices of the magnetic ions in the crystal structure. Materials of this type should strictly be designated as “ferrimagnetic” and in some respects are more closely related to anti-ferromagnetic substances than they are to ferromagnetics in which the magnetization results from the parallel alignment of all the magnetic moments present. We shall not adhere to this special nomenclature except to emphasize effects, which are due to the existence of the sub-lattices.

2,659 citations

Journal ArticleDOI
TL;DR: A phenomenological model is established that reveals the parameters essential for such a large adiabatic temperature change ΔT(ad), and it is demonstrated that obstacles to the application of Heusler alloys can be overcome by using the multi-response to different external stimuli and/or fine-tuning the lattice parameters.
Abstract: Magnetic cooling could be a radically different energy solution that could replace conventional vapour compression refrigeration in the future. It is now shown that a Heusler-type magnetocaloric alloy exhibits a remarkable cooling capability due to the effect of a sharp structural transformation at a specific temperature. The finding may be of relevance beyond Heusler alloys and represents an important step towards the implementation of cooling systems based on magnetocaloric materials.

1,233 citations

Journal ArticleDOI
TL;DR: The resulting magnetocaloric, electrocaloric and mechanocaloric effects are compared here in terms of history, experimental method, performance and prospective cooling applications.
Abstract: A magnetically, electrically or mechanically responsive material can undergo significant thermal changes near a ferroic phase transition when its order parameter is modified by the conjugate applied field. The resulting magnetocaloric, electrocaloric and mechanocaloric (elastocaloric or barocaloric) effects are compared here in terms of history, experimental method, performance and prospective cooling applications.

1,101 citations