scispace - formally typeset
Search or ask a question
Author

Marek Ziebart

Bio: Marek Ziebart is an academic researcher from University College London. The author has contributed to research in topics: Global Positioning System & GNSS applications. The author has an hindex of 24, co-authored 76 publications receiving 1877 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: The state-of-the-art in the more well-known large-scale dimensional metrology methods are described in detail in this paper, where relevant specialist review papers exist, these are cited as further reading.
Abstract: With ever-more demanding requirements for the accurate manufacture of large components, dimensional measuring techniques are becoming progressively more sophisticated. This review describes some of the more recently developed techniques and the state-of-the-art in the more well-known large-scale dimensional metrology methods. In some cases, the techniques are described in detail, or, where relevant specialist review papers exist, these are cited as further reading. The traceability of the measurement data collected is discussed with reference to new international standards that are emerging. In some cases, hybrid measurement techniques are finding specialized applications and these are referred to where appropriate. © IMechE 2009.

182 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used 3D building models to predict satellite visibility in urban canyons and evaluated the performance of current and future GNSS in London with decimetre-level accuracy.
Abstract: Positioning using the Global Positioning System (GPS) is unreliable in dense urban areas with tall buildings and/or narrow streets, known as ‘urban canyons’. This is because the buildings block, reflect or diffract the signals from many of the satellites. This paper investigates the use of 3-Dimensional (3-D) building models to predict satellite visibility. To predict Global Navigation Satellite System (GNSS) performance using 3-D building models, a simulation has been developed. A few optimized methods to improve the efficiency of the simulation for real-time purposes were implemented. Diffraction effects of satellite signals were considered to improve accuracy. The simulation is validated using real-world GPS and GLObal NAvigation Satellite System (GLONASS) observations. The performance of current and future GNSS in urban canyons is then assessed by simulation using an architectural city model of London with decimetre-level accuracy. GNSS availability, integrity and precision is evaluated over pedestrian and vehicle routes within city canyons using different combinations of GNSS constellations. The results show that using GPS and GLONASS together cannot guarantee 24-hour reliable positioning in urban canyons. However, with the addition of Galileo and Compass, currently under construction, reliable GNSS performance can be obtained at most, but not all, of the locations in the test scenarios. The modelling also demonstrates that GNSS availability is poorer for pedestrians than for vehicles and verifies that cross-street positioning errors are typically larger than along-street due to the geometrical constraints imposed by the buildings. For many applications, this modelling technique could also be used to predict the best route through a city at a given time, or the best time to perform GNSS positioning at a given location.

150 citations

Journal ArticleDOI
TL;DR: In this paper, the authors describe the common set of models and processing techniques applied to both reprocessed and operational orbits included in version C of the geophysical data record (GDR) for precision orbit determination (POD).
Abstract: The Jason-1 altimeter satellite and its follow-on mission Jason-2/OSTM were launched in December 2001 and June 2008, respectively, to provide the scientific community with a high-accuracy continuous record of observations of the ocean surface topography. Both missions carry on board three state-of-the-art tracking systems (DORIS, GPS, SLR) to meet the requirement of better-than-1.5 cm radial accuracy for the operational orbit included in the geophysical data record (GDR) product. This article outlines the common set of models and processing techniques applied to both Jason reprocessed and operational orbits included in version C of the GDR, referred to as GDR-C standards for precision orbit determination (POD), and describes the systematic components of the radial error budget that are of most interest for the altimeter data analysts. The nonsystematic component of the error budget, quantified by intercomparison of orbits using similar models or with reduced dependency on the dynamic models, is generally ...

133 citations

Journal ArticleDOI
TL;DR: In this article, shadow matching has been adapted to work on an Android smartphone and presented the first comprehensive performance assessment of smartphone GNSS shadow matching, which significantly improves cross-street positioning accuracy in dense urban environments.
Abstract: Global Navigation Satellite System (GNSS) shadow matching is a new positioning technique that determines position by comparing the measured signal availability and strength with predictions made using a three-dimensional (3D) city model. It complements conventional GNSS positioning and can significantly improve cross-street positioning accuracy in dense urban environments. This paper describes how shadow matching has been adapted to work on an Android smartphone and presents the first comprehensive performance assessment of smartphone GNSS shadow matching. Using GPS and GLONASS data recorded at 20 locations within central London, it is shown that shadow matching significantly outperforms conventional GNSS positioning in the cross-street direction. The success rate for obtaining a cross-street position accuracy within 5 m, enabling the correct side of a street to be determined, was 54·50% using shadow matching, compared to 24·77% for the conventional GNSS position. The likely performance of four-constellation shadow matching is predicted, the feasibility of a large-scale implementation of shadow matching is assessed, and some methods for improving performance are proposed. A further contribution is a signal-to-noise ratio analysis of the direct line-of-sight and non-line-of-sight signals received on a smartphone in a dense urban environment.

116 citations

Journal ArticleDOI
TL;DR: Real-world GNSS data has been collected at 22 different locations in central London to provide the first comprehensive and statistical performance analysis of shadow matching, and a positioning algorithm has been developed, interpolating between the top-scoring candidate positions.
Abstract: Global navigation satellite system (GNSS) positioning is widely used in land vehicle and pedestrian navigation systems. Nevertheless, in urban canyons GNSS remains inaccurate due to building blockages and reflections, especially in the cross-street direction. Shadow matching is a new technique, recently proposed for improving the cross-street positioning accuracy using a 3D model of the nearby buildings. This paper presents a number of advances in the shadow-matching algorithm. First, a positioning algorithm has been developed, interpolating between the top-scoring candidate positions. Furthermore, a new scoring scheme has been developed that accounts for signal diffraction and reflection. Finally, the efficiency of the process used to generate the grid of building boundaries used for predicting satellite visibility has been improved. Real-world GNSS data has been collected at 22 different locations in central London to provide the first comprehensive and statistical performance analysis of shadow matching. © 2013 Institute of Navigation.

115 citations


Cited by
More filters
Book
01 Dec 1988
TL;DR: In this paper, the spectral energy distribution of the reflected light from an object made of a specific real material is obtained and a procedure for accurately reproducing the color associated with the spectrum is discussed.
Abstract: This paper presents a new reflectance model for rendering computer synthesized images. The model accounts for the relative brightness of different materials and light sources in the same scene. It describes the directional distribution of the reflected light and a color shift that occurs as the reflectance changes with incidence angle. The paper presents a method for obtaining the spectral energy distribution of the light reflected from an object made of a specific real material and discusses a procedure for accurately reproducing the color associated with the spectral energy distribution. The model is applied to the simulation of a metal and a plastic.

1,401 citations

Journal ArticleDOI
TL;DR: The status and tracking capabilities of the IGS monitoring station network are presented and the multi-GNSS products derived from this resource are discussed and the achieved performance is assessed and related to the current level of space segment and user equipment characterization.

645 citations

Journal ArticleDOI
TL;DR: This study demonstrates that 3D city models are employed in at least 29 use cases that are a part of more than 100 applications that could be useful for scientists as well as stakeholders in the geospatial industry.
Abstract: In the last decades, 3D city models appear to have been predominantly used for visualisation; however, today they are being increasingly employed in a number of domains and for a large range of tasks beyond visualisation. In this paper, we seek to understand and document the state of the art regarding the utilisation of 3D city models across multiple domains based on a comprehensive literature study including hundreds of research papers, technical reports and online resources. A challenge in a study such as ours is that the ways in which 3D city models are used cannot be readily listed due to fuzziness, terminological ambiguity, unclear added-value of 3D geoinformation in some instances, and absence of technical information. To address this challenge, we delineate a hierarchical terminology (spatial operations, use cases, applications), and develop a theoretical reasoning to segment and categorise the diverse uses of 3D city models. Following this framework, we provide a list of identified use cases of 3D city models (with a description of each), and their applications. Our study demonstrates that 3D city models are employed in at least 29 use cases that are a part of more than 100 applications. The classified inventory could be useful for scientists as well as stakeholders in the geospatial industry, such as companies and national mapping agencies, as it may serve as a reference document to better position their operations, design product portfolios, and to better understand the market.

547 citations

Journal ArticleDOI
TL;DR: This work presents an ambiguity resolution algorithm that improves solution accuracy for single receiver point-positioning users and constrain (rather than fix) linear combinations of local phase biases to improve compatibility with global phase bias estimates.
Abstract: Global positioning system (GPS) data processing algorithms typically improve positioning solution accuracy by fixing double-differenced phase bias ambiguities to integer values. These “double-difference ambiguity resolution” methods usually invoke linear combinations of GPS carrier phase bias estimates from pairs of transmitters and pairs of receivers, and traditionally require simultaneous measurements from at least two receivers. However, many GPS users point position a single local receiver, based on publicly available solutions for GPS orbits and clocks. These users cannot form double differences. We present an ambiguity resolution algorithm that improves solution accuracy for single receiver point-positioning users. The algorithm processes dual- frequency GPS data from a single receiver together with wide-lane and phase bias estimates from the global network of GPS receivers that were used to generate the orbit and clock solutions for the GPS satellites. We constrain (rather than fix) linear combinations of local phase biases to improve compatibility with global phase bias estimates. For this precise point positioning, no other receiver data are required. When tested, our algorithm significantly improved repeatability of daily estimates of ground receiver positions, most notably in the east component by approximately 30% with respect to the nominal case wherein the carrier biases are estimated as real values. In this “static” test for terrestrial receiver positions, we achieved daily repeatability of 1.9, 2.1 and 6.0 mm in the east, north and vertical (ENV) components, respectively. For kinematic solutions, ENV repeatability is 7.7, 8.4, and 11.7 mm, respectively, representing improvements of 22, 8, and 14% with respect to the nominal. Results from precise orbit determination of the twin GRACE satellites demonstrated that the inter-satellite baseline accuracy improved by a factor of three, from 6 to 2 mm up to a long-term bias. Jason-2/Ocean Surface Topography Mission precise orbit determination tests results implied radial orbit accuracy significantly below the 10 mm level. Stability of time transfer, in low-Earth orbit, improved from 40 to 7 ps. We produced these results by applying this algorithm within the Jet Propulsion Laboratory’s (JPL’s) GIPSY/OASIS software package and using JPL’s orbit and clock products for the GPS constellation. These products now include a record of the wide-lane and phase bias estimates from the underlying global network of GPS stations. This implies that all GIPSY–OASIS positioning users can now benefit from this capability to perform single-receiver ambiguity resolution.

507 citations

Journal ArticleDOI
TL;DR: In this paper, a review of measurement technologies for precision positioning in manufacturing industries is presented, followed by a discussion on traceability and standards, and some advanced applications of measurement technology for manufacturing industries.
Abstract: Precision positioning of an object relative to a reference point is a common task in many activities of production engineering. Sensor technologies for single axis measurement, either linear or rotary, which form the fundamentals of measurement technologies for precision positioning, are reviewed. Multi-axis coordinate measurement methods such as triangulation and multilateration, as well as Cartesian and polar systems for specifying the position in a plane or three-dimensional (3D) space are then presented, followed by a discussion on traceability and standards. Some advanced applications of measurement technologies for precision positioning in manufacturing industries are also demonstrated.

340 citations