scispace - formally typeset
Search or ask a question
Author

Margaret K. Mann

Bio: Margaret K. Mann is an academic researcher from National Renewable Energy Laboratory. The author has contributed to research in topics: Hydrogen production & Life-cycle assessment. The author has an hindex of 21, co-authored 48 publications receiving 3419 citations.

Papers
More filters
Journal ArticleDOI
TL;DR: The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources as discussed by the authors, and a cost goal of $2.00-$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles.
Abstract: The U.S. Department of Energy and the National Renewable Energy Laboratory are developing technologies to produce hydrogen from renewable, sustainable sources. A cost goal of $2.00–$3.00 kg−1 of hydrogen has been identified as the range at which delivered hydrogen becomes cost competitive with gasoline for passenger vehicles. Electrolysis of water is a standard commercial technology for producing hydrogen. Using wind and solar resources to produce the electricity for the process creates a renewable system. Biomass-to-hydrogen processes, including gasification, pyrolysis, and fermentation, are less well-developed technologies. These processes offer the possibility of producing hydrogen from energy crops and from biomass materials such as forest residue and municipal sewage. Solar energy can be used to produce hydrogen from water and biomass by several conversion pathways. Concentrated solar energy can generate high temperatures at which thermochemical reactions can be used to split water. Photoelectrochemical water splitting and photobiology are long-term options for producing hydrogen from water using solar energy. All these technologies are in the development stage. Copyright © 2007 John Wiley & Sons, Ltd.

853 citations

ReportDOI
28 Sep 2000
TL;DR: In this article, a life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences, which is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.
Abstract: A life cycle assessment of hydrogen production via natural gas steam reforming was performed to examine the net emissions of greenhouse gases as well as other major environmental consequences. LCA is a systematic analytical method that helps identify and evaluate the environmental impacts of a specific process or competing processes.

462 citations

ReportDOI
01 Sep 1999
TL;DR: In this paper, a life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems.
Abstract: Coal has the largest share of utility power generation in the US, accounting for approximately 56% of all utility-produced electricity (US DOE, 1998). Therefore, understanding the environmental implications of producing electricity from coal is an important component of any plan to reduce total emissions and resource consumption. A life cycle assessment (LCA) on the production of electricity from coal was performed in order to examine the environmental aspects of current and future pulverized coal boiler systems. Three systems were examined: (1) a plant that represents the average emissions and efficiency of currently operating coal-fired power plants in the US (this tells us about the status quo), (2) a new coal-fired power plant that meets the New Source Performance Standards (NSPS), and (3) a highly advanced coal-fired power plant utilizing a low emission boiler system (LEBS).

292 citations

Journal ArticleDOI
TL;DR: A three-day workshop was held in 2001 to discuss life cycle inventory data for electricity production as mentioned in this paper, where electricity was selected as the topic for discussion since it features very prominently in the LCA results for most product life cycles, yet there is no consistency in how these data are calculated and presented.

266 citations

ReportDOI
27 Dec 2000
TL;DR: In this article, a life cycle assessment on electricity generation via a natural gas combined cycle system has been performed, where natural gas is used for steam and heat production in industrial processes, residential and commercial heating, and electric power generation.
Abstract: Natural gas is used for steam and heat production in industrial processes, residential and commercial heating, and electric power generation. Because of its importance in the power mix, a life cycle assessment on electricity generation via a natural gas combined cycle system has been performed.

241 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Hydrogen Production by Water−Gas Shift Reaction 4056 4.1.
Abstract: 1.0. Introduction 4044 2.0. Biomass Chemistry and Growth Rates 4047 2.1. Lignocellulose and Starch-Based Plants 4047 2.2. Triglyceride-Producing Plants 4049 2.3. Algae 4050 2.4. Terpenes and Rubber-Producing Plants 4052 3.0. Biomass Gasification 4052 3.1. Gasification Chemistry 4052 3.2. Gasification Reactors 4054 3.3. Supercritical Gasification 4054 3.4. Solar Gasification 4055 3.5. Gas Conditioning 4055 4.0. Syn-Gas Utilization 4056 4.1. Hydrogen Production by Water−Gas Shift Reaction 4056

7,067 citations

Journal ArticleDOI
TL;DR: The main roles of material science in the development of LIBs are discussed, with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.
Abstract: Over the past 30 years, significant commercial and academic progress has been made on Li-based battery technologies. From the early Li-metal anode iterations to the current commercial Li-ion batteries (LIBs), the story of the Li-based battery is full of breakthroughs and back tracing steps. This review will discuss the main roles of material science in the development of LIBs. As LIB research progresses and the materials of interest change, different emphases on the different subdisciplines of material science are placed. Early works on LIBs focus more on solid state physics whereas near the end of the 20th century, researchers began to focus more on the morphological aspects (surface coating, porosity, size, and shape) of electrode materials. While it is easy to point out which specific cathode and anode materials are currently good candidates for the next-generation of batteries, it is difficult to explain exactly why those are chosen. In this review, for the reader a complete developmental story of LIB should be clearly drawn, along with an explanation of the reasons responsible for the various technological shifts. The review will end with a statement of caution for the current modern battery research along with a brief discussion on beyond lithium-ion battery chemistries.

2,867 citations

Journal ArticleDOI
TL;DR: A review of recent developments of LCA methods, focusing on some areas where there has been an intense methodological development during the last years, and some of the emerging issues.

2,683 citations

Journal ArticleDOI
TL;DR: The latest efforts using advanced characterization techniques, particularly electrochemical impedance spectroscopy, are presented to define the obstacles that remain to be surmounted in order to fully exploit the potential of hematite for solar energy conversion.
Abstract: Photoelectrochemical (PEC) cells offer the ability to convert electromagnetic energy from our largest renewable source, the Sun, to stored chemical energy through the splitting of water into molecular oxygen and hydrogen. Hematite (α-Fe(2)O(3)) has emerged as a promising photo-electrode material due to its significant light absorption, chemical stability in aqueous environments, and ample abundance. However, its performance as a water-oxidizing photoanode has been crucially limited by poor optoelectronic properties that lead to both low light harvesting efficiencies and a large requisite overpotential for photoassisted water oxidation. Recently, the application of nanostructuring techniques and advanced interfacial engineering has afforded landmark improvements in the performance of hematite photoanodes. In this review, new insights into the basic material properties, the attractive aspects, and the challenges in using hematite for photoelectrochemical (PEC) water splitting are first examined. Next, recent progress enhancing the photocurrent by precise morphology control and reducing the overpotential with surface treatments are critically detailed and compared. The latest efforts using advanced characterization techniques, particularly electrochemical impedance spectroscopy, are finally presented. These methods help to define the obstacles that remain to be surmounted in order to fully exploit the potential of this promising material for solar energy conversion.

2,318 citations

Journal ArticleDOI
08 Dec 2006-Science
TL;DR: Low-input high-diversity mixtures of native grassland perennials can provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per hectare than can corn grain ethanol or soybean biodiesel.
Abstract: Biofuels derived from low-input high-diversity (LIHD) mixtures of native grassland perennials can provide more usable energy, greater greenhouse gas reductions, and less agrichemical pollution per hectare than can corn grain ethanol or soybean biodiesel. High-diversity grasslands had increasingly higher bioenergy yields that were 238% greater than monoculture yields after a decade. LIHD biofuels are carbon negative because net ecosystem carbon dioxide sequestration (4.4 megagram hectare(-1) year(-1) of carbon dioxide in soil and roots) exceeds fossil carbon dioxide release during biofuel production (0.32 megagram hectare(-1) year(-1)). Moreover, LIHD biofuels can be produced on agriculturally degraded lands and thus need to neither displace food production nor cause loss of biodiversity via habitat destruction.

1,778 citations