scispace - formally typeset
Search or ask a question
Author

Margaret M. Moore

Bio: Margaret M. Moore is an academic researcher from Northern Arizona University. The author has contributed to research in topics: Restoration ecology & Experimental forest. The author has an hindex of 33, co-authored 78 publications receiving 5926 citations.


Papers
More filters
Journal ArticleDOI
TL;DR: In this article, the fire disturbance regime and forest structure prior to Euro-American settlement (AD 1883) of a southwestern ponderosa pine (Pinus ponderosa) landscape were quantified in order to establish reference conditions as a baseline for ecosystem management.
Abstract: The fire disturbance regime and forest structure prior to Euro-American settlement (AD 1883) of a southwestern ponderosa pine (Pinus ponderosa) landscape were quantified in order to establish reference conditions as a baseline for ecosystem management. The mean presettlement fire interval between 1637 and 1883 was 3.7 yr for all fires and 6.5 yr for widespread fires, but fire has been excluded from the study area since 1883. Forest density increased under fire exclusion from an average of 148 trees/ha in 1883 (65 pines, 80 oaks, three other species), an open forest dominated by relatively large ponderosa pines, to 1265 trees/ha in 1994/1995 (720 pines, 471 oaks, 74 others), a dense forest characterized by relatively small and young trees. Species composition has shifted toward greater dominance by Gambel oak (Quercus gambelii) and conifers less adapted to frequent fires: white fir (Abies concolor) and Douglas-fir (Pseudotsuga menziesii). The reference presettlement conditions can be applied to management of this ecosystem in two ways. First, reference conditions are a benchmark against which to evaluate contemporary conditions and future alternatives. The comparison shows that the contemporary forest is well above the range of presettlement variability in forest density, and both live and dead fuel structures have developed that can support high-intensity wildfire. Second, reference conditions can serve as a goal for ecological restoration treatments.

650 citations

Journal ArticleDOI
TL;DR: Testing of restoration treatments at four sites in northern Arizona, USA, has shown promise, but the diverse context of management goals and constraints for Southwestern forest ecosystems means that appropriate applica- tions of restoration techniques will probably differ in various settings.
Abstract: Ecological restoration is the process of reestablishing the structure and func- tion of native ecosystems and developing mutually beneficial human-wildland interactions that are compatible with the evolutionary history of those systems Restoration is based on an ecosystem's reference conditions (or natural range of variability); the difference between reference conditions and contemporary conditions is used to assess the need for restorative treatments and to evaluate their success Since ecosystems are highly complex and dynamic, it is not possible to describe comprehensively all possible attributes of ref- erence conditions Instead, ecosystem characteristics with essential roles in the evolutionary environment are chosen for detailed study Key characteristics of structure, function, and disturbance—especially fire regimes in ponderosa pine ecosystems—are quantified as far as possible through dendroecological and paleoecological studies, historical evidence, and comparison to undisrupted sites Ecological restoration treatments are designed to reverse recent, human-caused ecological degradation Testing of restoration treatments at four sites in northern Arizona, USA, has shown promise, but the diverse context of management goals and constraints for Southwestern forest ecosystems means that appropriate applica- tions of restoration techniques will probably differ in various settings

439 citations

Journal ArticleDOI
TL;DR: The concept of historical range of variability in ecosystem structure or process is valuable in understanding and illustrating the dynamic nature of ecosystems; the processes that sustain and change ecosystems, especially disturbances; the current state of the system in relationship to the past; and the possible ranges of conditions that are feasible to maintain this paper.
Abstract: The concept of historical range of variability in ecosystem structure or process is valuable in understanding and illustrating the dynamic nature of ecosystems; the processes that sustain and change ecosystems, especially disturbances; the current state of the system in relationship to the past; and the possible ranges of conditions that are feasible to maintain. Because ecosystems are structured hierarchically, historical range of variability must be characterized at multiple spatial scales and relevant time scales. Historical range of variability is a useful reference for determining a range of desired future conditions, and for establishing the limits of acceptable change for ecosystem components and processes.

337 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Understanding of the widely observed increase in tree biomass following introduction of commercial ranching into savannas requires inclusion of interactions among browsers, grazers, and fires, and their effects on tree recruitment.
Abstract: Savannas occur where trees and grasses interact to create a biome that is neither grassland nor forest. Woody and gramineous plants interact by many mechanisms, some negative (competition) and some positive (facilitation). The strength and sign of the interaction varies in both time and space, allowing a rich array of possible outcomes but no universal predictive model. Simple models of coexistence of trees and grasses, based on separation in rooting depth, are theoretically and experimentally inadequate. Explanation of the widely observed increase in tree biomass following introduction of commercial ranching into savannas requires inclusion of interactions among browsers, grazers, and fires, and their effects on tree recruitment. Prediction of the consequences of manipulating tree biomass through clearing further requires an understanding of how trees modify light, water, and nutrient environments of grasses. Understanding the nature of coexistence between trees and grass, which under other circumstances...

2,436 citations

Journal ArticleDOI
24 Apr 2009-Science
TL;DR: What is known and what is needed to develop a holistic understanding of the role of fire in the Earth system are reviewed, particularly in view of the pervasive impact of fires and the likelihood that they will become increasingly difficult to control as climate changes.
Abstract: Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

2,365 citations

Journal ArticleDOI
Jens Kattge1, Sandra Díaz2, Sandra Lavorel3, Iain Colin Prentice4, Paul Leadley5, Gerhard Bönisch1, Eric Garnier3, Mark Westoby4, Peter B. Reich6, Peter B. Reich7, Ian J. Wright4, Johannes H. C. Cornelissen8, Cyrille Violle3, Sandy P. Harrison4, P.M. van Bodegom8, Markus Reichstein1, Brian J. Enquist9, Nadejda A. Soudzilovskaia8, David D. Ackerly10, Madhur Anand11, Owen K. Atkin12, Michael Bahn13, Timothy R. Baker14, Dennis D. Baldocchi10, Renée M. Bekker15, Carolina C. Blanco16, Benjamin Blonder9, William J. Bond17, Ross A. Bradstock18, Daniel E. Bunker19, Fernando Casanoves20, Jeannine Cavender-Bares7, Jeffrey Q. Chambers21, F. S. Chapin22, Jérôme Chave3, David A. Coomes23, William K. Cornwell8, Joseph M. Craine24, B. H. Dobrin9, Leandro da Silva Duarte16, Walter Durka25, James J. Elser26, Gerd Esser27, Marc Estiarte28, William F. Fagan29, Jingyun Fang, Fernando Fernández-Méndez30, Alessandra Fidelis31, Bryan Finegan20, Olivier Flores32, H. Ford33, Dorothea Frank1, Grégoire T. Freschet34, Nikolaos M. Fyllas14, Rachael V. Gallagher4, Walton A. Green35, Alvaro G. Gutiérrez25, Thomas Hickler, Steven I. Higgins36, John G. Hodgson37, Adel Jalili, Steven Jansen38, Carlos Alfredo Joly39, Andrew J. Kerkhoff40, Don Kirkup41, Kaoru Kitajima42, Michael Kleyer43, Stefan Klotz25, Johannes M. H. Knops44, Koen Kramer, Ingolf Kühn16, Hiroko Kurokawa45, Daniel C. Laughlin46, Tali D. Lee47, Michelle R. Leishman4, Frederic Lens48, Tanja Lenz4, Simon L. Lewis14, Jon Lloyd14, Jon Lloyd49, Joan Llusià28, Frédérique Louault50, Siyan Ma10, Miguel D. Mahecha1, Peter Manning51, Tara Joy Massad1, Belinda E. Medlyn4, Julie Messier9, Angela T. Moles52, Sandra Cristina Müller16, Karin Nadrowski53, Shahid Naeem54, Ülo Niinemets55, S. Nöllert1, A. Nüske1, Romà Ogaya28, Jacek Oleksyn56, Vladimir G. Onipchenko57, Yusuke Onoda58, Jenny C. Ordoñez59, Gerhard E. Overbeck16, Wim A. Ozinga59, Sandra Patiño14, Susana Paula60, Juli G. Pausas60, Josep Peñuelas28, Oliver L. Phillips14, Valério D. Pillar16, Hendrik Poorter, Lourens Poorter59, Peter Poschlod61, Andreas Prinzing62, Raphaël Proulx63, Anja Rammig64, Sabine Reinsch65, Björn Reu1, Lawren Sack66, Beatriz Salgado-Negret20, Jordi Sardans28, Satomi Shiodera67, Bill Shipley68, Andrew Siefert69, Enio E. Sosinski70, Jean-François Soussana50, Emily Swaine71, Nathan G. Swenson72, Ken Thompson37, Peter E. Thornton73, Matthew S. Waldram74, Evan Weiher47, Michael T. White75, S. White11, S. J. Wright76, Benjamin Yguel3, Sönke Zaehle1, Amy E. Zanne77, Christian Wirth58 
Max Planck Society1, National University of Cordoba2, Centre national de la recherche scientifique3, Macquarie University4, University of Paris-Sud5, University of Western Sydney6, University of Minnesota7, VU University Amsterdam8, University of Arizona9, University of California, Berkeley10, University of Guelph11, Australian National University12, University of Innsbruck13, University of Leeds14, University of Groningen15, Universidade Federal do Rio Grande do Sul16, University of Cape Town17, University of Wollongong18, New Jersey Institute of Technology19, Centro Agronómico Tropical de Investigación y Enseñanza20, Lawrence Berkeley National Laboratory21, University of Alaska Fairbanks22, University of Cambridge23, Kansas State University24, Helmholtz Centre for Environmental Research - UFZ25, Arizona State University26, University of Giessen27, Autonomous University of Barcelona28, University of Maryland, College Park29, Universidad del Tolima30, University of São Paulo31, University of La Réunion32, University of York33, University of Sydney34, Harvard University35, Goethe University Frankfurt36, University of Sheffield37, University of Ulm38, State University of Campinas39, Kenyon College40, Royal Botanic Gardens41, University of Florida42, University of Oldenburg43, University of Nebraska–Lincoln44, Tohoku University45, Northern Arizona University46, University of Wisconsin–Eau Claire47, Naturalis48, James Cook University49, Institut national de la recherche agronomique50, Newcastle University51, University of New South Wales52, Leipzig University53, Columbia University54, Estonian University of Life Sciences55, Polish Academy of Sciences56, Moscow State University57, Kyushu University58, Wageningen University and Research Centre59, Spanish National Research Council60, University of Regensburg61, University of Rennes62, Université du Québec à Trois-Rivières63, Potsdam Institute for Climate Impact Research64, Technical University of Denmark65, University of California, Los Angeles66, Hokkaido University67, Université de Sherbrooke68, Syracuse University69, Empresa Brasileira de Pesquisa Agropecuária70, University of Aberdeen71, Michigan State University72, Oak Ridge National Laboratory73, University of Leicester74, Utah State University75, Smithsonian Institution76, University of Missouri77
01 Sep 2011
TL;DR: TRY as discussed by the authors is a global database of plant traits, including morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs, which can be used for a wide range of research from evolutionary biology, community and functional ecology to biogeography.
Abstract: Plant traits – the morphological, anatomical, physiological, biochemical and phenological characteristics of plants and their organs – determine how primary producers respond to environmental factors, affect other trophic levels, influence ecosystem processes and services and provide a link from species richness to ecosystem functional diversity. Trait data thus represent the raw material for a wide range of research from evolutionary biology, community and functional ecology to biogeography. Here we present the global database initiative named TRY, which has united a wide range of the plant trait research community worldwide and gained an unprecedented buy-in of trait data: so far 93 trait databases have been contributed. The data repository currently contains almost three million trait entries for 69 000 out of the world's 300 000 plant species, with a focus on 52 groups of traits characterizing the vegetative and regeneration stages of the plant life cycle, including growth, dispersal, establishment and persistence. A first data analysis shows that most plant traits are approximately log-normally distributed, with widely differing ranges of variation across traits. Most trait variation is between species (interspecific), but significant intraspecific variation is also documented, up to 40% of the overall variation. Plant functional types (PFTs), as commonly used in vegetation models, capture a substantial fraction of the observed variation – but for several traits most variation occurs within PFTs, up to 75% of the overall variation. In the context of vegetation models these traits would better be represented by state variables rather than fixed parameter values. The improved availability of plant trait data in the unified global database is expected to support a paradigm shift from species to trait-based ecology, offer new opportunities for synthetic plant trait research and enable a more realistic and empirically grounded representation of terrestrial vegetation in Earth system models.

2,017 citations

Journal ArticleDOI
TL;DR: The recent literature is reviewed, drawing parallels between fire and herbivores as alternative consumers of vegetation, and pointing to the common questions and some surprisingly different answers that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.
Abstract: It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of years, helping to shape global biome distribution and to maintain the structure and function of fire-prone communities. Fire is also a significant evolutionary force, and is one of the first tools that humans used to re-shape their world. Here, we review the recent literature, drawing parallels between fire and herbivores as alternative consumers of vegetation. We point to the common questions, and some surprisingly different answers, that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.

1,942 citations

Journal ArticleDOI
14 Jan 2016-Nature
TL;DR: Analysis of worldwide variation in six major traits critical to growth, survival and reproduction within the largest sample of vascular plant species ever compiled found that occupancy of six-dimensional trait space is strongly concentrated, indicating coordination and trade-offs.
Abstract: The authors found that the key elements of plant form and function, analysed at global scale, are largely concentrated into a two-dimensional plane indexed by the size of whole plants and organs on the one hand, and the construction costs for photosynthetic leaf area, on the other.

1,814 citations