scispace - formally typeset
Search or ask a question
Author

Margaret S. Livingstone

Bio: Margaret S. Livingstone is an academic researcher from Harvard University. The author has contributed to research in topics: Visual cortex & Receptive field. The author has an hindex of 53, co-authored 135 publications receiving 17259 citations. Previous affiliations of Margaret S. Livingstone include Rowland Institute for Science & Boston Children's Hospital.


Papers
More filters
Journal ArticleDOI
06 May 1988-Science
TL;DR: Perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.
Abstract: Anatomical and physiological observations in monkeys indicate that the primate visual system consists of several separate and independent subdivisions that analyze different aspects of the same retinal image: cells in cortical visual areas 1 and 2 and higher visual areas are segregated into three interdigitating subdivisions that differ in their selectivity for color, stereopsis, movement, and orientation. The pathways selective for form and color seem to be derived mainly from the parvocellular geniculate subdivisions, the depth- and movement-selective components from the magnocellular. At lower levels, in the retina and in the geniculate, cells in these two subdivisions differ in their color selectivity, contrast sensitivity, temporal properties, and spatial resolution. These major differences in the properties of cells at lower levels in each of the subdivisions led to the prediction that different visual functions, such as color, depth, movement, and form perception, should exhibit corresponding differences. Human perceptual experiments are remarkably consistent with these predictions. Moreover, perceptual experiments can be designed to ask which subdivisions of the system are responsible for particular visual abilities, such as figure/ground discrimination or perception of depth from perspective or relative movement--functions that might be difficult to deduce from single-cell response properties.

3,185 citations

Journal ArticleDOI
TL;DR: The results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system.
Abstract: Staining for the mitochondrial enzyme cytochrome oxidase reveals an array of dense regions (blobs) in the primate primary visual cortex. They are most obvious in the upper layers, 2 and 3, but can also be seen in layers 4B, 5, and 6, in register with the blobs in layers 2 and 3. We compared cells inside and outside blobs in macaque and squirrel monkeys, looking at their physiological responses and anatomical connections. Cells within blobs did not show orientation selectivity, whereas cells between blobs were highly orientation selective. Receptive fields of blob cells had circular symmetry and were of three main types, Broad-Band Center-Surround, Red-Green Double-Opponent, and Yellow-Blue Double-Opponent. Double-Opponent cells responded poorly or not at all to white light in any form, or to diffuse light at any wavelength. In contrast to blob cells, none of the cells recorded in layer 4C beta were Double-Opponent: like the majority of cells in the parvocellular geniculate layers, they were either Broad-Band or Color-Opponent Center-Surround, e.g., red-on-center green-off-surround. To our surprise cells in layer 4C alpha were orientation selective. In tangential penetrations throughout layers 2 and 3, optium orientation, when plotted against electrode position, formed long, regular, usually linear sequences, which were interrupted but not perturbed by the blobs. Staining area 18 for cytochrome oxidase reveals a series of alternating wide and narrow dense stripes, separated by paler interstripes. After small injections of horseradish peroxidase into area 18, we saw a precise set of connections from the blobs in area 17 to thin stripes in area 18, and from the interblob regions in area 17 to interstripes in area 18. Specific reciprocal connections also ran from thin stripes to blobs and from interstripes to interblobs. We have not yet determined the area 17 connections to thick stripes in area 18. In addition, within area 18 there are stripe-to-stripe and interstripe-to-interstripe intrinsic connections. These results suggest that a system involved in the processing of color information, especially color-spatial interactions, runs parallel to and separate from the orientation-specific system. Color, encoded in three coordinates by the major blob cell types, red-green, yellow-blue, and black-white, can be transformed into the three coordinates, red, green, and blue, of the Retinex algorithm of Land.

1,546 citations

Journal ArticleDOI
03 Feb 2006-Science
TL;DR: This article used functional magnetic resonance imaging (fMRI) to identify and target the largest face-selective region in two macaques for single unit recording and found that almost all of the visually responsive neurons in this region were strongly face selective, indicating a dedicated cortical area exists to support face processing in the macaque.
Abstract: Face perception is a skill crucial to primates. In both humans and macaque monkeys, functional magnetic resonance imaging (fMRI) reveals a system of cortical regions that show increased blood flow when the subject views images of faces, compared with images of objects. However, the stimulus selectivity of single neurons within these fMRI-identified regions has not been studied. We used fMRI to identify and target the largest face-selective region in two macaques for single-unit recording. Almost all (97%) of the visually responsive neurons in this region were strongly face selective, indicating that a dedicated cortical area exists to support face processing in the macaque.

1,060 citations

Journal ArticleDOI
TL;DR: This paper found that dyslexic subjects showed diminished visual evoked potentials to rapid, low-contrast stimuli but normal responses to slow or high contrast stimuli, consistent with a defect in the magnocellular pathway at the level of visual area 1 or earlier.
Abstract: Several behavioral studies have shown that developmental dyslexics do poorly in tests requiring rapid visual processing. In primates fast, low-contrast visual information is carried by the magnocellular subdivision of the visual pathway, and slow, high-contrast information is carried by the parvocellular division. In this study, we found that dyslexic subjects showed diminished visually evoked potentials to rapid, low-contrast stimuli but normal responses to slow or high-contrast stimuli. The abnormalities in the dyslexic subjects' evoked potentials were consistent with a defect in the magnocellular pathway at the level of visual area 1 or earlier. We then compared the lateral geniculate nuclei from five dyslexic brains to five control brains and found abnormalities in the magnocellular, but not the parvocellular, layers. Studies using auditory and somatosensory tests have shown that dyslexics do poorly in these modalities only when the tests require rapid discriminations. We therefore hypothesize that many cortical systems are similarly divided into a fast and a slow subdivision and that dyslexia specifically affects the fast subdivisions.

1,008 citations

Journal ArticleDOI
TL;DR: The physiological properties of the cells in the thin and pale stripes reflect the properties of their antecedent cells in 17, but nevertheless exhibit differences that suggest the kinds of processing that might occur at this stage.
Abstract: Primate visual cortical area 18 (visual area 2), when stained for the enzyme cytochrome oxidase, shows a pattern of alternating dark and light stripes; in squirrel monkeys, the dark stripes are clearly of 2 alternating types, thick and thin. We have recorded from these 3 subdivisions in macaques and squirrel monkeys, and find that each has distinctive physiological properties: (1) Cells in one set of dark stripes, in squirrel monkeys the thin stripes, are not orientation- selective; a high proportion show color-opponency. (2) Cells in the other set of dark stripes (thick stripes) are orientation-selective; most of them are also selective for binocular disparity, suggesting that they are concerned with stereoscopic depth. (3) Cells in the pale stripes are also orientation-selective and more than half of them are end-stopped. Each of the 3 subdivisions receives a different input from area 17: the thin stripes from the blobs, the pale stripes from the interblobs, the thick stripes from layer 4B. The pale stripes are thus part of the parvocellular system, and the thick stripes part of the magnocellular system. The physiological properties of the cells in the thin and pale stripes reflect the properties of their antecedent cells in 17, but nevertheless exhibit differences that suggest the kinds of processing that might occur at this stage.

742 citations


Cited by
More filters
28 Jul 2005
TL;DR: PfPMP1)与感染红细胞、树突状组胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作�ly.
Abstract: 抗原变异可使得多种致病微生物易于逃避宿主免疫应答。表达在感染红细胞表面的恶性疟原虫红细胞表面蛋白1(PfPMP1)与感染红细胞、内皮细胞、树突状细胞以及胎盘的单个或多个受体作用,在黏附及免疫逃避中起关键的作用。每个单倍体基因组var基因家族编码约60种成员,通过启动转录不同的var基因变异体为抗原变异提供了分子基础。

18,940 citations

Journal ArticleDOI
TL;DR: The meaning of the terms "method" and "method bias" are explored and whether method biases influence all measures equally are examined, and the evidence of the effects that method biases have on individual measures and on the covariation between different constructs is reviewed.
Abstract: Despite the concern that has been expressed about potential method biases, and the pervasiveness of research settings with the potential to produce them, there is disagreement about whether they really are a problem for researchers in the behavioral sciences. Therefore, the purpose of this review is to explore the current state of knowledge about method biases. First, we explore the meaning of the terms “method” and “method bias” and then we examine whether method biases influence all measures equally. Next, we review the evidence of the effects that method biases have on individual measures and on the covariation between different constructs. Following this, we evaluate the procedural and statistical remedies that have been used to control method biases and provide recommendations for minimizing method bias.

8,719 citations

Journal ArticleDOI
TL;DR: A summary of the layout of cortical areas associated with vision and with other modalities, a computerized database for storing and representing large amounts of information on connectivity patterns, and the application of these data to the analysis of hierarchical organization of the cerebral cortex are reported on.
Abstract: In recent years, many new cortical areas have been identified in the macaque monkey. The number of identified connections between areas has increased even more dramatically. We report here on (1) a summary of the layout of cortical areas associated with vision and with other modalities, (2) a computerized database for storing and representing large amounts of information on connectivity patterns, and (3) the application of these data to the analysis of hierarchical organization of the cerebral cortex. Our analysis concentrates on the visual system, which includes 25 neocortical areas that are predominantly or exclusively visual in function, plus an additional 7 areas that we regard as visual-association areas on the basis of their extensive visual inputs. A total of 305 connections among these 32 visual and visual-association areas have been reported. This represents 31% of the possible number of pathways if each area were connected with all others. The actual degree of connectivity is likely to be closer to 40%. The great majority of pathways involve reciprocal connections between areas. There are also extensive connections with cortical areas outside the visual system proper, including the somatosensory cortex, as well as neocortical, transitional, and archicortical regions in the temporal and frontal lobes. In the somatosensory/motor system, there are 62 identified pathways linking 13 cortical areas, suggesting an overall connectivity of about 40%. Based on the laminar patterns of connections between areas, we propose a hierarchy of visual areas and of somatosensory/motor areas that is more comprehensive than those suggested in other recent studies. The current version of the visual hierarchy includes 10 levels of cortical processing. Altogether, it contains 14 levels if one includes the retina and lateral geniculate nucleus at the bottom as well as the entorhinal cortex and hippocampus at the top. Within this hierarchy, there are multiple, intertwined processing streams, which, at a low level, are related to the compartmental organization of areas V1 and V2 and, at a high level, are related to the distinction between processing centers in the temporal and parietal lobes. However, there are some pathways and relationships (about 10% of the total) whose descriptions do not fit cleanly into this hierarchical scheme for one reason or another. In most instances, though, it is unclear whether these represent genuine exceptions to a strict hierarchy rather than inaccuracies or uncertainities in the reported assignment.

7,796 citations

Journal ArticleDOI
TL;DR: It is proposed that the ventral stream of projections from the striate cortex to the inferotemporal cortex plays the major role in the perceptual identification of objects, while the dorsal stream projecting from the stripping to the posterior parietal region mediates the required sensorimotor transformations for visually guided actions directed at such objects.

5,878 citations

Journal ArticleDOI
TL;DR: A wide variety of data on capacity limits suggesting that the smaller capacity limit in short-term memory tasks is real is brought together and a capacity limit for the focus of attention is proposed.
Abstract: Miller (1956) summarized evidence that people can remember about seven chunks in short-term memory (STM) tasks. How- ever, that number was meant more as a rough estimate and a rhetorical device than as a real capacity limit. Others have since suggested that there is a more precise capacity limit, but that it is only three to five chunks. The present target article brings together a wide vari- ety of data on capacity limits suggesting that the smaller capacity limit is real. Capacity limits will be useful in analyses of information processing only if the boundary conditions for observing them can be carefully described. Four basic conditions in which chunks can be identified and capacity limits can accordingly be observed are: (1) when information overload limits chunks to individual stimulus items, (2) when other steps are taken specifically to block the recoding of stimulus items into larger chunks, (3) in performance discontinuities caused by the capacity limit, and (4) in various indirect effects of the capacity limit. Under these conditions, rehearsal and long-term memory cannot be used to combine stimulus items into chunks of an unknown size; nor can storage mechanisms that are not capacity- limited, such as sensory memory, allow the capacity-limited storage mechanism to be refilled during recall. A single, central capacity limit averaging about four chunks is implicated along with other, noncapacity-limited sources. The pure STM capacity limit expressed in chunks is distinguished from compound STM limits obtained when the number of separately held chunks is unclear. Reasons why pure capacity estimates fall within a narrow range are discussed and a capacity limit for the focus of attention is proposed.

5,677 citations