scispace - formally typeset
Search or ask a question
Author

Margaret S. Torn

Bio: Margaret S. Torn is an academic researcher from Lawrence Berkeley National Laboratory. The author has contributed to research in topics: Soil carbon & Soil water. The author has an hindex of 70, co-authored 223 publications receiving 19845 citations. Previous affiliations of Margaret S. Torn include Energy Biosciences Institute & Stanford University.


Papers
More filters
Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: In this article, a new generation of experiments and soil carbon models were proposed to predict the SOM response to global warming, and they showed that molecular structure alone alone does not control SOM stability.
Abstract: Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

4,219 citations

Journal ArticleDOI
01 Jan 1997-Nature
TL;DR: In this article, the authors explore the relationship between soil mineralogy and organic carbon along two natural gradients (i.e., soil-age and climate) in volcanic soil environments.
Abstract: A large source of uncertainty in present understanding of the global carbon cycle is the distribution and dynamics of the soil organic carbon reservoir. Most of the organic carbon in soils is degraded to inorganic forms slowly, on timescales from centuries to millennia1. Soil minerals are known to play a stabilizing role, but how spatial and temporal variation in soil mineralogy controls the quantity and turnover of long-residence-time organic carbon is not well known2. Here we use radiocarbon analyses to explore interactions between soil mineralogy and soil organic carbon along two natural gradients—of soil-age and of climate—in volcanic soil environments. During the first ∼150,000 years of soil development, the volcanic parent material weathered to metastable, non-crystalline minerals. Thereafter, the amount of non-crystalline minerals declined, and more stable crystalline minerals accumulated. Soil organic carbon content followed a similar trend, accumulating to a maximum after 150,000 years, and then decreasing by 50% over the next four million years. A positive relationship between non-crystalline minerals and organic carbon was also observed in soils through the climate gradient, indicating that the accumulation and subsequent loss of organic matter were largely driven by changes in the millennial scale cycling of mineral-stabilized carbon, rather than by changes in the amount of fast-cycling organic matter or in net primary productivity. Soil mineralogy is therefore important in determining the quantity of organic carbon stored in soil, its turnover time, and atmosphere–ecosystem carbon fluxes during long-term soil development; this conclusion should be generalizable at least to other humid environments.

1,308 citations

Journal ArticleDOI
06 Jan 2012-Science
TL;DR: It is found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required.
Abstract: The Technology Path to Deep Greenhouse Gas Emissions Cuts by 2050: The Pivotal Role of Electricity James H. Williams, 1,2 Andrew DeBenedictis, 1 Rebecca Ghanadan, 1,3 Amber Mahone, 1 Jack Moore, 1 William R. Morrow III, 4 Snuller Price, 1 Margaret S. Torn 3 * Several states and countries have adopted targets for deep reductions in greenhouse gas emissions by 2050, but there has been little physically realistic modeling of the energy and economic transformations required. We analyzed the infrastructure and technology path required to meet California’s goal of an 80% reduction below 1990 levels, using detailed modeling of infrastructure stocks, resource constraints, and electricity system operability. We found that technically feasible levels of energy efficiency and decarbonized energy supply alone are not sufficient; widespread electrification of transportation and other sectors is required. Decarbonized electricity would become the dominant form of energy supply, posing challenges and opportunities for economic growth and climate policy. This transformation demands technologies that are not yet commercialized, as well as coordination of investment, technology development, and infrastructure deployment. n 2004, Pacala and Socolow (1) proposed a way to stabilize climate using existing green- house gas (GHG) mitigation technologies, vi- sualized as interchangeable, global-scale “wedges” of equivalent emissions reductions. Subsequent work has produced more detailed analyses, but none combines the sectoral granularity, physical and resource constraints, and geographic scale needed for developing realistic technology and policy roadmaps (2–4). We addressed this gap by analyzing the specific changes in infrastructure, technology, cost, and governance required to de- carbonize a major economy, at the state level, that has primary jurisdiction over electricity supply, transportation planning, building standards, and other key components of an energy transition. California is the world’s sixth largest econ- omy and 12th largest emitter of GHGs. Its per capita GDP and GHG emissions are similar to those of Japan and western Europe, and its policy and technology choices have broad rele- vance nationally and globally (5, 6). California’s Assembly Bill 32 (AB32) requires the state to reduce GHG emissions to 1990 levels by 2020, a reduction of 30% relative to business-as-usual assumptions (7). Previous modeling work we per- formed for California’s state government formed the analytical foundation for the state’s AB32 implementation plan in the electricity and natural gas sectors (8, 9). California has also set a target of reducing 2050 emissions 80% below the 1990 level, con- I Energy and Environmental Economics, 101 Montgomery Street, Suite 1600, San Francisco, CA 94104, USA. 2 Monterey Institute of International Studies, 460 Pierce Street, Monterey, CA 93940, USA. 3 Energy and Resources Group, University of Cali- fornia,& Earth Sciences Division, Lawrence Berkeley National Laboratory (LBNL),, Berkeley, CA 94720, USA. 4 Environmental Energy Technologies Division, LBNL, Berkeley, CA 94720, USA. *To whom correspondence should be addressed. E-mail: mstorn@lbl.gov sistent with an Intergovernmental Panel on Cli- mate Change (IPCC) emissions trajectory that would stabilize atmospheric GHG concentrations at 450 parts per million carbon dioxide equivalent (CO 2 e) and reduce the likelihood of dangerous an- thropogenic interference with climate (10). Work- ing at both time scales, we found a pressing need for methodologies that bridge the analytical gap between planning for shallower, near-term GHG reductions, based entirely on existing commercialized technology, and deeper, long-term GHG reduc- tions, which will depend substantially on technol- ogies that are not yet commercialized. We used a stock-rollover methodology that simulated physical infrastructure at an aggregate level, and built scenarios to explore mitigation options (11, 12). Our model divided California’s economy into six energy demand sectors and two energy supply sectors, plus cross-sectoral eco- nomic activities that produce non-energy and non-CO 2 GHG emissions. The model adjusted the infrastructure stock (e.g., vehicle fleets, build- ings, power plants, and industrial equipment) in each sector as new infrastructure was added and old infrastructure was retired, each year from 2008 to 2050. We constructed a baseline scenario from government forecasts of population and gross state product, combined with regression-based infra- structure characteristics and emissions intensities, producing a 2050 emissions baseline of 875 Mt CO 2 e (Fig. 1). In mitigation scenarios, we used backcasting, setting 2050 emissions at the state target of 85 Mt CO 2 e as a constrained outcome, and altered the emissions intensities of new in- frastructure over time as needed to meet the tar- get, employing 72 types of physical mitigation measures (13). In the short term, measure selec- tion was driven by implementation plans for AB32 and other state policies (table S1). In the long term, technological progress and rates of in- troduction were constrained by physical feasi- bility, resource availability, and historical uptake rates rather than relative prices of technology, en- ergy, or carbon as in general equilibrium models (14). Technology penetration levels in our model are within the range of technological feasibility for the United States suggested by recent assess- ments (table S20) (15, 16). We did not include technologies expected to be far from commercial- ization in the next few decades, such as fusion- based electricity. Mitigation cost was calculated as the difference between total fuel and measure costs in the mitigation and baseline scenarios. Our fuel and technology cost assumptions, including learning curves (tables S4, S5, S11, and S12, and fig. S29), are comparable to those in other recent studies (17). Clearly, future costs are very uncertain over such a long time horizon, especially for technologies that are not yet commercialized. We did not assume explicit life-style changes (e.g., vegetarianism, bicycle transportation), which could have a substantial effect on mitigation requirements and costs (18); behavior change in our model is subsumed within conservation measures and en- ergy efficiency (EE). To ensure that electricity supply scenarios met the technical requirements for maintaining reli- able service, we included an electricity system dispatch algorithm that tested grid operability. Without a dispatch model, it is difficult to de- termine whether a generation mix has infeasibly high levels of intermittent generation. We devel- oped an electricity demand curve bottom-up from sectoral demand, by season and time of day. On the basis of the demand curve, the model con- strained generation scenarios to satisfy in succes- sion the energy, capacity, and system-balancing requirements for reliable operation. The operabil- ity constraint set physical limits on the penetra- tion of different types of generation and specified the requirements for peaking generation, on-grid energy storage, transmission capacity, and out-of- state imports and exports for a given generation mix (table S13 and figs.S20 to S31). It was as- sumed that over the long run, California would not “go it alone” in pursuing deep GHG reduc- tions, and thus that neighboring states would de- carbonize their generation such that the carbon intensity of imports would be comparable to that of California in-state generation (19). Electrification required to meet 80% reduc- tion target. Three major energy system transfor- mations were necessary to meet the target (Fig. 2). First, EE had to improve by at least 1.3% year −1 over 40 years. Second, electricity supply had to be nearly decarbonized, with 2050 emissions in- tensity less than 0.025 kg CO 2 e/kWh. Third, most existing direct fuel uses had to be electrified, with electricity constituting 55% of end-use energy in 2050 versus 15% today. Results for a mitigation scenario, including these and other measures, are shown in Fig. 1. Of the emissions reductions relative to 2050 baseline emissions, 28% came from EE, 27% from decarbonization of electricity generation, 14% from a combination of energy

723 citations

Journal ArticleDOI
TL;DR: In this article, the authors analyzed pool size and isotopic composition (14C, 13C) of mineral-protected and recalcitrant organic carbon (OC) in 12 subsurface horizons from 10 acidic forest soils, showing that stabilization of OM by interaction with poorly crystalline minerals and polymeric metal species is the most important mechanism for preservation of OM in these acid subsoil horizons.
Abstract: Soil organic matter (OM) can be stabilized against decomposition by association with minerals, by its inherent recalcitrance and by occlusion in aggregates. However, the relative contribution of these factors to OM stabilization is yet unknown. We analyzed pool size and isotopic composition (14C, 13C) of mineral-protected and recalcitrant OM in 12 subsurface horizons from 10 acidic forest soils. The results were related to properties of the mineral phase and to OM composition as revealed by CPMAS 13C-NMR and CuO oxidation. Stable OM was defined as that material which survived treatment of soils with 6 wt% sodium hypochlorite (NaOCl). Mineral-protected OM was extracted by subsequent dissolution of minerals by 10% hydrofluoric acid (HF). Organic matter resistant against NaOCl and insoluble in HF was considered as recalcitrant OM. Hypochlorite removed primarily 14C-modern OM. Of the stable organic carbon (OC), amounting to 2.4–20.6 g kg−1 soil, mineral dissolution released on average 73%. Poorly crystalline Fe and Al phases (Feo, Alo) and crystalline Fe oxides (Fed−o) explained 86% of the variability of mineral-protected OC. Atomic Cp/(Fe+Al)p ratios of 1.3–6.5 suggest that a portion of stable OM was associated with polymeric Fe and Al species. Recalcitrant OC (0.4–6.5 g kg−1 soil) contributed on average 27% to stable OC and the amount was not correlated with any mineralogical property. Recalcitrant OC had lower Δ14C and δ13C values than mineral-protected OC and was mainly composed of aliphatic (56%) and O-alkyl (13%) C moieties. Lignin phenols were only present in small amounts in either mineral-protected or recalcitrant OM (mean 4.3 and 0.2 g kg−1 OC). The results confirm that stabilization of OM by interaction with poorly crystalline minerals and polymeric metal species is the most important mechanism for preservation of OM in these acid subsoil horizons.

703 citations

Journal ArticleDOI
Gilberto Pastorello1, Carlo Trotta2, E. Canfora2, Housen Chu1  +300 moreInstitutions (119)
TL;DR: The FLUXNET2015 dataset provides ecosystem-scale data on CO 2 , water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe, and is detailed in this paper.
Abstract: The FLUXNET2015 dataset provides ecosystem-scale data on CO2, water, and energy exchange between the biosphere and the atmosphere, and other meteorological and biological measurements, from 212 sites around the globe (over 1500 site-years, up to and including year 2014). These sites, independently managed and operated, voluntarily contributed their data to create global datasets. Data were quality controlled and processed using uniform methods, to improve consistency and intercomparability across sites. The dataset is already being used in a number of applications, including ecophysiology studies, remote sensing studies, and development of ecosystem and Earth system models. FLUXNET2015 includes derived-data products, such as gap-filled time series, ecosystem respiration and photosynthetic uptake estimates, estimation of uncertainties, and metadata about the measurements, presented for the first time in this paper. In addition, 206 of these sites are for the first time distributed under a Creative Commons (CC-BY 4.0) license. This paper details this enhanced dataset and the processing methods, now made available as open-source codes, making the dataset more accessible, transparent, and reproducible.

681 citations


Cited by
More filters
Journal ArticleDOI

7,335 citations

Journal ArticleDOI
TL;DR: Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.
Abstract: Humans are altering the composition of biological communities through a variety of activities that increase rates of species invasions and species extinctions, at all scales, from local to global. These changes in components of the Earth's biodiversity cause concern for ethical and aesthetic reasons, but they also have a strong potential to alter ecosystem properties and the goods and services they provide to humanity. Ecological experiments, observations, and theoretical developments show that ecosystem properties depend greatly on biodiversity in terms of the functional characteristics of organisms present in the ecosystem and the distribution and abundance of those organisms over space and time. Species effects act in concert with the effects of climate, resource availability, and disturbance regimes in influencing ecosystem properties. Human activities can modify all of the above factors; here we focus on modification of these biotic controls. The scientific community has come to a broad consensus on many aspects of the re- lationship between biodiversity and ecosystem functioning, including many points relevant to management of ecosystems. Further progress will require integration of knowledge about biotic and abiotic controls on ecosystem properties, how ecological communities are struc- tured, and the forces driving species extinctions and invasions. To strengthen links to policy and management, we also need to integrate our ecological knowledge with understanding of the social and economic constraints of potential management practices. Understanding this complexity, while taking strong steps to minimize current losses of species, is necessary for responsible management of Earth's ecosystems and the diverse biota they contain.

6,891 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the association of soil organic carbon (SOC) content with climate and soil texture at different soil depths, and tested the hypothesis that vegetation type, through patterns of allocation, is a dominant control on the vertical distribution of SOC.
Abstract: As the largest pool of terrestrial organic carbon, soils interact strongly with atmospheric composition, climate, and land cover change. Our capacity to predict and ameliorate the consequences of global change depends in part on a better understanding of the distributions and controls of soil organic carbon (SOC) and how vegetation change may affect SOC distributions with depth. The goals of this paper are (1) to examine the association of SOC content with climate and soil texture at different soil depths; (2) to test the hypothesis that vegetation type, through patterns of allocation, is a dominant control on the vertical distribution of SOC; and (3) to estimate global SOC storage to 3 m, including an analysis of the potential effects of vegetation change on soil carbon storage. We based our analysis on .2700 soil profiles in three global databases supplemented with data for climate, vegetation, and land use. The analysis focused on mineral soil layers. Plant functional types significantly affected the vertical distribution of SOC. The per- centage of SOC in the top 20 cm (relative to the first meter) averaged 33%, 42%, and 50% for shrublands, grasslands, and forests, respectively. In shrublands, the amount of SOC in the second and third meters was 77% of that in the first meter; in forests and grasslands, the totals were 56% and 43%, respectively. Globally, the relative distribution of SOC with depth had a slightly stronger association with vegetation than with climate, but the opposite was true for the absolute amount of SOC. Total SOC content increased with precipitation and clay content and decreased with temperature. The importance of these controls switched with depth, climate dominating in shallow layers and clay content dominating in deeper layers, possibly due to increasing percentages of slowly cycling SOC fractions at depth. To control for the effects of climate on vegetation, we grouped soils within climatic ranges and compared distributions for vegetation types within each range. The percentage of SOC in the top 20 cm relative to the first meter varied from 29% in cold arid shrublands to 57% in cold humid forests and, for a given climate, was always deepest in shrublands, inter- mediate in grasslands, and shallowest in forests ( P , 0.05 in all cases). The effect of vegetation type was more important than the direct effect of precipitation in this analysis. These data suggest that shoot/root allocations combined with vertical root distributions, affect the distribution of SOC with depth. Global SOC storage in the to p3mo fsoil was 2344 Pg C, or 56% more than the 1502 Pg estimated for the first meter (which is similar to the total SOC estimates of 1500-1600 Pg made by other researchers). Global totals for the second and third meters were 491 and 351 Pg C, and the biomes with the most SOC at 1-3 m depth were tropical evergreen forests (158 Pg C) and tropical grasslands/savannas (146 Pg C). Our work suggests that plant functional types, through differences in allocation, help to control SOC distributions with depth in the soil. Our analysis also highlights the potential importance of vegetation change and SOC pools for carbon sequestration strategies.

4,278 citations

Journal ArticleDOI
06 Oct 2011-Nature
TL;DR: In this article, a new generation of experiments and soil carbon models were proposed to predict the SOM response to global warming, and they showed that molecular structure alone alone does not control SOM stability.
Abstract: Globally, soil organic matter (SOM) contains more than three times as much carbon as either the atmosphere or terrestrial vegetation. Yet it remains largely unknown why some SOM persists for millennia whereas other SOM decomposes readily—and this limits our ability to predict how soils will respond to climate change. Recent analytical and experimental advances have demonstrated that molecular structure alone does not control SOM stability: in fact, environmental and biological controls predominate. Here we propose ways to include this understanding in a new generation of experiments and soil carbon models, thereby improving predictions of the SOM response to global warming.

4,219 citations

Journal Article
TL;DR: In this article, the authors present a document, redatto, voted and pubblicato by the Ipcc -Comitato intergovernativo sui cambiamenti climatici - illustra la sintesi delle ricerche svolte su questo tema rilevante.
Abstract: Cause, conseguenze e strategie di mitigazione Proponiamo il primo di una serie di articoli in cui affronteremo l’attuale problema dei mutamenti climatici. Presentiamo il documento redatto, votato e pubblicato dall’Ipcc - Comitato intergovernativo sui cambiamenti climatici - che illustra la sintesi delle ricerche svolte su questo tema rilevante.

4,187 citations