scispace - formally typeset
Search or ask a question
Author

Margarita Ortiz-Martínez

Bio: Margarita Ortiz-Martínez is an academic researcher from Monterrey Institute of Technology and Higher Education. The author has contributed to research in topics: Cell culture & Cellular differentiation. The author has an hindex of 5, co-authored 8 publications receiving 174 citations. Previous affiliations of Margarita Ortiz-Martínez include Universidad Autónoma de Nuevo León & University of Illinois at Urbana–Champaign.

Papers
More filters
Journal ArticleDOI
TL;DR: A review that includes more recent findings for cereals as a potential source of bioactive peptides in the treatment of cancer, the techniques for their isolation and characterisation and the assays used to prove their bioactivity are not available.

82 citations

Journal ArticleDOI
TL;DR: It is demonstrated that synergism of combinatorial treatments (Silver/transition metals, including Zn, Co, Cd, Ni, and Cu) increases up to 8-fold their antimicrobial effect, when compared to their individual effects, against E. coli and B. subtilis.
Abstract: Due to the emergence of multi-drug resistant strains, development of novel antibiotics has become a critical issue. One promising approach is the use of transition metals, since they exhibit rapid and significant toxicity, at low concentrations, in prokaryotic cells. Nevertheless, one main drawback of transition metals is their toxicity in eukaryotic cells. Here, we show that the barriers to use them as therapeutic agents could be mitigated by combining them with silver. We demonstrate that synergism of combinatorial treatments (Silver/transition metals, including Zn, Co, Cd, Ni, and Cu) increases up to 8-fold their antimicrobial effect, when compared to their individual effects, against E. coli and B. subtilis. We find that most combinatorial treatments exhibit synergistic antimicrobial effects at low/non-toxic concentrations to human keratinocyte cells, blast and melanoma rat cell lines. Moreover, we show that silver/(Cu, Ni, and Zn) increase prokaryotic cell permeability at sub-inhibitory concentrations, demonstrating this to be a possible mechanism of the synergistic behavior. Together, these results suggest that these combinatorial treatments will play an important role in the future development of antimicrobial agents and treatments against infections. In specific, the cytotoxicity experiments show that the combinations have great potential in the treatment of topical infections.

68 citations

Journal ArticleDOI
TL;DR: It is suggested that the antiproliferative effect on HepG2 cells of peptide fractions isolated from both genotypes, but not pure peptides, was based on induction of apoptosis due to decrease of antiapoptotic factors expression.

45 citations

Journal ArticleDOI
TL;DR: In this paper, Kjeldahl et al. determined the differences in protein profile and antioxidant activity of protein fractions and hydrolysates between a hybrid white maize (Asgrow 773) and a quality protein maize (CML-502).

23 citations

Journal ArticleDOI
TL;DR: The data indicate the potential for zein peptides to prevent or treat cancer, possibly by apoptosis induction, as compared to other food proteins with bioactivity studied for cancer treatment.
Abstract: In recent years, food proteins with bioactivity have been studied for cancer treatment. Zein peptides have shown an important set of bioactivities. This work compares the cytotoxic activity of zein hydrolyzed, extracted from four Zea species: teosinte, native, hybrid, and transgenic (Teo, Nat, Hyb, and HT) in a hepatic cell culture. Zein fraction was extracted, quantified, and hydrolyzed. Antioxidant capacity and cytotoxicity assays were performed on HepG2 cells. The levels of expression of caspase 3, 8, and 9 were evaluated in zein-treated cell cultures. Zea parviglumis showed the highest zein content (46.0 mg/g) and antioxidant activity (673.40 TE/g) out of all native zeins. Peptides from Hyb and HT showed high antioxidant activity compared to their native counterparts (1055.45 and 724.32 TE/g, respectively). Cytotoxic activity was observed in the cell culture using peptides of the four Zea species; Teo and Nat (IC50: 1781.63 and 1546.23 ng/mL) had no significant difference between them but showed more cytotoxic activity than Hyb and HT (IC50: 1252.25 and 1155.56 ng/mL). Increased expression of caspase 3 was observed in the peptide-treated HepG2 cells (at least two-fold more with respect to the control sample). These data indicate the potential for zein peptides to prevent or treat cancer, possibly by apoptosis induction.

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: The BIOPEP-UWM™ database of bioactive peptides has recently become a popular tool in the research on bio active peptides, especially on these derived from foods and being constituents of diets that prevent development of chronic diseases.
Abstract: The BIOPEP-UWM™ database of bioactive peptides (formerly BIOPEP) has recently become a popular tool in the research on bioactive peptides, especially on these derived from foods and being constituents of diets that prevent development of chronic diseases. The database is continuously updated and modified. The addition of new peptides and the introduction of new information about the existing ones (e.g., chemical codes and references to other databases) is in progress. New opportunities include the possibility of annotating peptides containing D-enantiomers of amino acids, batch processing option, converting amino acid sequences into SMILES code, new quantitative parameters characterizing the presence of bioactive fragments in protein sequences, and finding proteinases that release particular peptides.

375 citations

Journal ArticleDOI
TL;DR: A comprehensive inventory of the progresses achieved so far is gathered, to allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs.
Abstract: High-performance bioceramics are required for preventing failure and prolonging the life-time of bone grafting scaffolds and osseous implants. The proper identification and development of materials with extended functionalities addressing socio-economic needs and health problems constitute important and critical steps at the heart of clinical research. Recent findings in the realm of ion-substituted hydroxyapatite (HA) could pave the road towards significant developments in biomedicine, with an emphasis on a new generation of orthopaedic and dentistry applications, since such bioceramics are able to mimic the structural, compositional and mechanical properties of the bone mineral phase. In fact, the fascinating ability of the HA crystalline lattice to allow for the substitution of calcium ions with a plethora of cationic species has been widely explored in the recent period, with consequent modifications of its physical and chemical features, as well as its functional mechanical and in vitro and in vivo biological performance. A comprehensive inventory of the progresses achieved so far is both opportune and of paramount importance, in order to not only gather and summarize information, but to also allow fellow researchers to compare with ease and filter the best solutions for the cation substitution of HA-based materials and enable the development of multi-functional biomedical designs. The review surveys preparation and synthesis methods, pinpoints all the explored cation dopants, and discloses the full application range of substituted HA. Special attention is dedicated to the antimicrobial efficiency spectrum and cytotoxic trade-off concentration values for various cell lines, highlighting new prophylactic routes for the prevention of implant failure. Importantly, the current in vitro biological tests (widely employed to unveil the biological performance of HA-based materials), and their ability to mimic the in vivo biological interactions, are also critically assessed. Future perspectives are discussed, and a series of recommendations are underlined.

171 citations

Journal ArticleDOI
TL;DR: This review focuses on the production of bioactive peptides, with special emphasis on fermentation and enzymatic hydrolysis, and the antioxidant, antimicrobial, anti-hypertensive,Anti-adipogenic activities and probiotic-bacterial growth-promoting aspects of various peptides are discussed.

151 citations

Journal ArticleDOI
TL;DR: This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo.
Abstract: Cereals and legumes are key components of a healthy and balanced diet. Accordingly, many national nutritional guidelines emphasize their health promoting properties by placing them at the base of nutritional food pyramids. This concept is further validated by the observed correlation between a lower risk and occurrence of chronic diseases and the adherence to dietary patterns, like the Mediterranean diet, in which cereal grains, legumes and derived products represent a staple food. In the search for a dietary approach to control/prevent chronic degenerative diseases, protein derived bioactive peptides may represent one such source of health-enhancing components. These peptides may already be present in foods as natural components or may derive from hydrolysis by chemical or enzymatic treatments (digestion, hydrolysis or fermentation). Many reports are present in the literature regarding the bioactivity of peptides in vitro and a wide range of activities has been described, including antimicrobial properties, blood pressure-lowering (ACE inhibitory) effects, cholesterol-lowering ability, antithrombotic and antioxidant activities, enhancement of mineral absorption/bioavailability, cyto- or immunomodulatory effects, and opioid-like activities. However it is difficult to translate these observed effects to human. In fact, the active peptide may be degraded during digestion, or may not be absorbed or reach the target tissues at a concentration necessary to exert its function. This review will focus on bioactive peptides identified in cereals and legumes, from an agronomical and biochemical point of view, including considerations about requirements for the design of appropriate clinical trials necessary for the assessment of their nutraceutical effect in vivo.

142 citations

Journal ArticleDOI
TL;DR: An updated survey on bioactive peptides present in food crop plants, with a particular focus on immunomodulatory peptides which might be relevant for therapeutic applications is reported, using a bioinformatic approach.

142 citations