scispace - formally typeset
Search or ask a question
Author

Margit Heinlaan

Bio: Margit Heinlaan is an academic researcher from National Institute of Chemical Physics and Biophysics. The author has contributed to research in topics: Daphnia magna & Microplastics. The author has an hindex of 14, co-authored 21 publications receiving 3073 citations. Previous affiliations of Margit Heinlaan include Estonian University of Life Sciences & Tallinn University.

Papers
More filters
Journal ArticleDOI
TL;DR: This is the first evaluation of ZnO, CuO and TiO2 toxicity to bacteria Vibrio fischeri and crustaceans Daphnia magna and Thamnocephalus platyurus with a special emphasis on product formulations (nano or bulk oxides) and solubilization of particles.

1,410 citations

Journal ArticleDOI
21 Jul 2014-PLOS ONE
TL;DR: This study investigated the size-dependent toxic effects of a well-characterized library of Ag NPs to several microbial species, protozoans, algae, crustaceans and mammalian cells in vitro and showed that the toxicity of 20–80 nm Ag NPS could fully be explained by released Ag ions whereas 10 nm AgNPs proved more toxic than predicted.
Abstract: The concept of nanotechnologies is based on size-dependent properties of particles in the 1–100 nm range. However, the relation between the particle size and biological effects is still unclear. The aim of the current paper was to generate and analyse a homogenous set of experimental toxicity data on Ag nanoparticles (Ag NPs) of similar coating (citrate) but of 5 different primary sizes (10, 20, 40, 60 and 80 nm) to different types of organisms/cells commonly used in toxicity assays: bacterial, yeast and algal cells, crustaceans and mammalian cells in vitro. When possible, the assays were conducted in ultrapure water to minimise the effect of medium components on silver speciation. The toxic effects of NPs to different organisms varied about two orders of magnitude, being the lowest (∼0.1 mg Ag/L) for crustaceans and algae and the highest (∼26 mg Ag/L) for mammalian cells. To quantify the role of Ag ions in the toxicity of Ag NPs, we normalized the EC50 values to Ag ions that dissolved from the NPs. The analysis showed that the toxicity of 20–80 nm Ag NPs could fully be explained by released Ag ions whereas 10 nm Ag NPs proved more toxic than predicted. Using E. coli Ag-biosensor, we demonstrated that 10 nm Ag NPs were more bioavailable to E. coli than silver salt (AgNO3). Thus, one may infer that 10 nm Ag NPs had more efficient cell-particle contact resulting in higher intracellular bioavailability of silver than in case of bigger NPs. Although the latter conclusion is initially based on one test organism, it may lead to an explanation for “size-dependent“ biological effects of silver NPs. This study, for the first time, investigated the size-dependent toxic effects of a well-characterized library of Ag NPs to several microbial species, protozoans, algae, crustaceans and mammalian cells in vitro.

479 citations

Journal ArticleDOI
TL;DR: The natural waters remarkably decreased the toxicity of nanoCuO (but not that of nanoZnO) to crustaceans depending mainly on the concentration of dissolved organic carbon (DOC) or solubilised ions as determined by specific metal-sensing bacteria.

416 citations

Journal ArticleDOI
TL;DR: This review provides a comprehensive and critical literature overview on Ag, ZnO and CuO NPs’ toxicity mechanisms on the basis of various environmentally relevant test species and mammalian cells in vitro and three major phenomena driving the toxicity of these nanoparticles are revealed.
Abstract: Silver, ZnO and CuO nanoparticles (NPs) are increasingly used as biocides. There is however increasing evidence of their threat to “non-target” organisms. In such a context, the understanding of the toxicity mechanisms is crucial for both the design of more efficient nano-antimicrobials, i.e. for “toxic by design” and at the same time for the design of nanomaterials that are biologically and/or environmentally benign throughout their life-cycle (safe by design). This review provides a comprehensive and critical literature overview on Ag, ZnO and CuO NPs’ toxicity mechanisms on the basis of various environmentally relevant test species and mammalian cells in vitro. In addition, factors modifying the toxic effect of nanoparticles, e.g. impact of the test media, are discussed. Literature analysis revealed three major phenomena driving the toxicity of these nanoparticles: (i) dissolution of nanoparticles, (ii) organism-dependent cellular uptake of NPs and (iii) induction of oxidative stress and conseq...

309 citations

Journal ArticleDOI
TL;DR: Comparing the knowledge on toxic or non-toxic nature of nanomaterials may be used for safe-by-design approach, and internalization of Co3O4 NPs seemed to be most prominent in this aspect.
Abstract: The knowledge on potential harmful effects of metallic nanomaterials lags behind their increased use in consumer products and therefore, the safety data on various nanomaterials applicable for risk assessment are urgently needed. In this study, 11 metal oxide nanoparticles (MeOx NPs) prepared using flame pyrolysis method were analyzed for their toxicity against human alveolar epithelial cells A549, human epithelial colorectal cells Caco2 and murine fibroblast cell line Balb/c 3T3. The cell lines were exposed for 24 h to suspensions of 3-100 μg/mL MeOx NPs and cellular viability was evaluated using. Neutral Red Uptake (NRU) assay. In parallel to NPs, toxicity of soluble salts of respective metals was analyzed, to reveal the possible cellular effects of metal ions shedding from the NPs. The potency of MeOx to produce reactive oxygen species was evaluated in the cell-free assay. The used three cell lines showed comparable toxicity responses to NPs and their metal ion counterparts in the current test setting. Six MeOx NPs (Al2O3, Fe3O4, MgO, SiO2, TiO2, WO3) did not show toxic effects below 100 µg/mL. For five MeOx NPs, the averaged 24 h IC50 values for the three mammalian cell lines were 16.4 µg/mL for CuO, 22.4 µg/mL for ZnO, 57.3 µg/mL for Sb2O3, 132.3 µg/mL for Mn3O4 and 129 µg/mL for Co3O4. Comparison of the dissolution level of MeOx and the toxicity of soluble salts allowed to conclude that the toxicity of CuO, ZnO and Sb2O3 NPs was driven by release of metal ions. The toxic effects of Mn3O4 and Co3O4 could be attributed to the ROS-inducing ability of these NPs. All the NPs were internalized by the cells according to light microscopy studies but also proven by TEM, and internalization of Co3O4 NPs seemed to be most prominent in this aspect. In conclusion, this work provides valuable toxicological data for a library of 11 MeOx NPs. Combining the knowledge on toxic or non-toxic nature of nanomaterials may be used for safe-by-design approach.

189 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination,ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration.
Abstract: Antibacterial activity of zinc oxide nanoparticles (ZnO-NPs) has received significant interest worldwide particularly by the implementation of nanotechnology to synthesize particles in the nanometer region. Many microorganisms exist in the range from hundreds of nanometers to tens of micrometers. ZnO-NPs exhibit attractive antibacterial properties due to increased specific surface area as the reduced particle size leading to enhanced particle surface reactivity. ZnO is a bio-safe material that possesses photo-oxidizing and photocatalysis impacts on chemical and biological species. This review covered ZnO-NPs antibacterial activity including testing methods, impact of UV illumination, ZnO particle properties (size, concentration, morphology, and defects), particle surface modification, and minimum inhibitory concentration. Particular emphasize was given to bactericidal and bacteriostatic mechanisms with focus on generation of reactive oxygen species (ROS) including hydrogen peroxide (H2O2), OH− (hydroxyl radicals), and O2 −2 (peroxide). ROS has been a major factor for several mechanisms including cell wall damage due to ZnO-localized interaction, enhanced membrane permeability, internalization of NPs due to loss of proton motive force and uptake of toxic dissolved zinc ions. These have led to mitochondria weakness, intracellular outflow, and release in gene expression of oxidative stress which caused eventual cell growth inhibition and cell death. In some cases, enhanced antibacterial activity can be attributed to surface defects on ZnO abrasive surface texture. One functional application of the ZnO antibacterial bioactivity was discussed in food packaging industry where ZnO-NPs are used as an antibacterial agent toward foodborne diseases. Proper incorporation of ZnO-NPs into packaging materials can cause interaction with foodborne pathogens, thereby releasing NPs onto food surface where they come in contact with bad bacteria and cause the bacterial death and/or inhibition.

2,627 citations

Journal ArticleDOI
TL;DR: This review focuses on the properties and applications of inorganic nanostructured materials and their surface modifications, with good antimicrobial activity, and the role of different NP materials.

2,058 citations

Journal ArticleDOI
TL;DR: The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment.
Abstract: Nanomaterials (NMs) have gained prominence in technological advancements due to their tunable physical, chemical and biological properties with enhanced performance over their bulk counterparts. NMs are categorized depending on their size, composition, shape, and origin. The ability to predict the unique properties of NMs increases the value of each classification. Due to increased growth of production of NMs and their industrial applications, issues relating to toxicity are inevitable. The aim of this review is to compare synthetic (engineered) and naturally occurring nanoparticles (NPs) and nanostructured materials (NSMs) to identify their nanoscale properties and to define the specific knowledge gaps related to the risk assessment of NPs and NSMs in the environment. The review presents an overview of the history and classifications of NMs and gives an overview of the various sources of NPs and NSMs, from natural to synthetic, and their toxic effects towards mammalian cells and tissue. Additionally, the types of toxic reactions associated with NPs and NSMs and the regulations implemented by different countries to reduce the associated risks are also discussed.

1,976 citations

Journal ArticleDOI
TL;DR: CuO nanoparticles were most potent regarding cytotoxicity and DNA damage, and carbon nanotubes showed cytotoxic effects and caused DNA damage in the lowest dose tested.
Abstract: Since the manufacture and use of nanoparticles are increasing, humans are more likely to be exposed occupationally or via consumer products and the environment. However, so far toxicity data for most manufactured nanoparticles are limited. The aim of this study was to investigate and compare different nanoparticles and nanotubes regarding cytotoxicity and ability to cause DNA damage and oxidative stress. The study was focused on different metal oxide particles (CuO, TiO2, ZnO, CuZnFe2O4, Fe3O4, Fe2O3), and the toxicity was compared to that of carbon nanoparticles and multiwalled carbon nanotubes (MWCNT). The human lung epithelial cell line A549 was exposed to the particles, and cytotoxicity was analyzed using trypan blue staining. DNA damage and oxidative lesions were determined using the comet assay, and intracellular production of reactive oxygen species (ROS) was measured using the oxidation-sensitive fluoroprobe 2',7'-dichlorofluorescin diacetate (DCFH-DA). The results showed that there was a high variation among different nanoparticles concerning their ability to cause toxic effects. CuO nanoparticles were most potent regarding cytotoxicity and DNA damage. The toxicity was likely not explained by Cu ions released to the cell medium. These particles also caused oxidative lesions and were the only particles that induced an almost significant increase (p = 0.058) in intracellular ROS. ZnO showed effects on cell viability as well as DNA damage, whereas the TiO2 particles (a mix of rutile and anatase) only caused DNA damage. For iron oxide particles (Fe3O4, Fe2O3), no or low toxicity was observed, but CuZnFe2O4 particles were rather potent in inducing DNA lesions. Finally, the carbon nanotubes showed cytotoxic effects and caused DNA damage in the lowest dose tested. The effects were not explained by soluble metal impurities. In conclusion, this study highlights the in vitro toxicity of CuO nanoparticles.

1,281 citations

Journal ArticleDOI
18 May 2012-ACS Nano
TL;DR: A linear correlation was found between the average concentration of total ROS and the bacterial survival rates under UV irradiation, and this correlation quantitatively linked ROS production capability of NPs to their antibacterial activity as well as shed light on the applications of metal-oxide NPs as potential antibacterial agents.
Abstract: Oxidative stress induced by reactive oxygen species (ROS) is one of the most important antibacterial mechanisms of engineered nanoparticles (NPs). To elucidate the ROS generation mechanisms, we investigated the ROS production kinetics of seven selected metal-oxide NPs and their bulk counterparts under UV irradiation (365 nm). The results show that different metal oxides had distinct photogenerated ROS kinetics. Particularly, TiO2 nanoparticles and ZnO nanoparticles generated three types of ROS (superoxide radical, hydroxyl radical, and singlet oxygen), whereas other metal oxides generated only one or two types or did not generate any type of ROS. Moreover, NPs yielded more ROS than their bulk counterparts likely due to larger surface areas of NPs providing more absorption sites for UV irradiation. The ROS generation mechanism was elucidated by comparing the electronic structures (i.e., band edge energy levels) of the metal oxides with the redox potentials of various ROS generation, which correctly interpr...

1,209 citations