scispace - formally typeset
Search or ask a question
Author

Maria Armakola

Bio: Maria Armakola is an academic researcher from Harvard University. The author has contributed to research in topics: RNA & Gene. The author has an hindex of 5, co-authored 6 publications receiving 1272 citations. Previous affiliations of Maria Armakola include Stanford University & University of Pennsylvania.

Papers
More filters
Journal ArticleDOI
26 Aug 2010-Nature
TL;DR: It is shown that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models.
Abstract: The causes of amyotrophic lateral sclerosis (ALS), a devastating human neurodegenerative disease, are poorly understood, although the protein TDP-43 has been suggested to have a critical role in disease pathogenesis. Here we show that ataxin 2 (ATXN2), a polyglutamine (polyQ) protein mutated in spinocerebellar ataxia type 2, is a potent modifier of TDP-43 toxicity in animal and cellular models. ATXN2 and TDP-43 associate in a complex that depends on RNA. In spinal cord neurons of ALS patients, ATXN2 is abnormally localized; likewise, TDP-43 shows mislocalization in spinocerebellar ataxia type 2. To assess the involvement of ATXN2 in ALS, we analysed the length of the polyQ repeat in the ATXN2 gene in 915 ALS patients. We found that intermediate-length polyQ expansions (27-33 glutamines) in ATXN2 were significantly associated with ALS. These data establish ATXN2 as a relatively common ALS susceptibility gene. Furthermore, these findings indicate that the TDP-43-ATXN2 interaction may be a promising target for therapeutic intervention in ALS and other TDP-43 proteinopathies.

1,117 citations

Journal ArticleDOI
TL;DR: It is shown that, in the absence of Dbr1 enzymatic activity, intronic lariats accumulate in the cytoplasm and likely act as decoys to sequester TDP-43, preventing it from interfering with essential cellular RNAs and RNA-binding proteins.
Abstract: Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease primarily affecting motor neurons. Mutations in the gene encoding TDP-43 cause some forms of the disease, and cytoplasmic TDP-43 aggregates accumulate in degenerating neurons of most individuals with ALS. Thus, strategies aimed at targeting the toxicity of cytoplasmic TDP-43 aggregates may be effective. Here, we report results from two genome-wide loss-of-function TDP-43 toxicity suppressor screens in yeast. The strongest suppressor of TDP-43 toxicity was deletion of DBR1, which encodes an RNA lariat debranching enzyme. We show that, in the absence of Dbr1 enzymatic activity, intronic lariats accumulate in the cytoplasm and likely act as decoys to sequester TDP-43, preventing it from interfering with essential cellular RNAs and RNA-binding proteins. Knockdown of Dbr1 in a human neuronal cell line or in primary rat neurons is also sufficient to rescue TDP-43 toxicity. Our findings provide insight into TDP-43-mediated cytotoxicity and suggest that decreasing Dbr1 activity could be a potential therapeutic approach for ALS.

206 citations

Journal ArticleDOI
TL;DR: The results suggest that inappropriate C-terminal cleavage of α-syn, which is known to occur in vivo in PD brain or a decline of intracellular catechol levels might affect disease progression, resulting in accelerated α- syn inclusion formation and dopaminergic neurodegeneration.

93 citations

Journal ArticleDOI
01 Mar 2011-Methods
TL;DR: The methods and approaches used in order to gain insight into TDP-43 biology and its role in disease are readily adaptable to other neurodegenerative disease proteins.

33 citations

Journal ArticleDOI
TL;DR: 15 conserved genes are identified that function as suppressors or enhancers of CUG repeat-induced toxicity and that modulate formation of nuclear foci by CUG-repeat RNA that suggest a broader surveillance role for NMD in which variations in this pathway influence multiple degenerative diseases.
Abstract: Myotonic dystrophy disorders are caused by expanded CUG repeats in non-coding regions. To reveal mechanisms of CUG repeat pathogenesis we used C. elegans expressing CUG repeats to identify gene inactivations that modulate CUG repeat toxicity. We identified 15 conserved genes that function as suppressors or enhancers of CUG repeat-induced toxicity and modulate formation of nuclear RNA foci by CUG repeats. These genes regulated CUG repeat-induced toxicity through distinct mechanisms including RNA export and RNA clearance, suggesting that CUG repeat toxicity is mediated by multiple pathways. A subset is shared with other degenerative disorders. The nonsense-mediated mRNA decay (NMD) pathway plays a conserved role regulating CUG repeat RNA transcript levels and toxicity, and NMD recognition of toxic RNAs depends on 3′UTR GC nucleotide content. Our studies suggest a broader surveillance role for NMD where variations in this pathway influence multiple degenerative diseases.

21 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, are examined, and therapeutic opportunities relating to these neurovascular deficits are highlighted.
Abstract: The neurovascular unit (NVU) comprises brain endothelial cells, pericytes or vascular smooth muscle cells, glia and neurons. The NVU controls blood-brain barrier (BBB) permeability and cerebral blood flow, and maintains the chemical composition of the neuronal 'milieu', which is required for proper functioning of neuronal circuits. Recent evidence indicates that BBB dysfunction is associated with the accumulation of several vasculotoxic and neurotoxic molecules within brain parenchyma, a reduction in cerebral blood flow, and hypoxia. Together, these vascular-derived insults might initiate and/or contribute to neuronal degeneration. This article examines mechanisms of BBB dysfunction in neurodegenerative disorders, notably Alzheimer's disease, and highlights therapeutic opportunities relating to these neurovascular deficits.

2,256 citations

Journal ArticleDOI
TL;DR: A cis-regulatory role of noncoding intronic transcripts on their parent coding genes is suggested, which largely accumulates to its sites of transcription, associates with elongation Pol II machinery, and acts as a positive regulator of Pol II transcription.

1,688 citations

Journal ArticleDOI
TL;DR: This work presents a census of 1,542 manually curated RBPs that are analysed for their interactions with different classes of RNA, their evolutionary conservation, their abundance and their tissue-specific expression, a critical step towards the comprehensive characterization of proteins involved in human RNA metabolism.
Abstract: Post-transcriptional gene regulation (PTGR) concerns processes involved in the maturation, transport, stability and translation of coding and non-coding RNAs. RNA-binding proteins (RBPs) and ribonucleoproteins coordinate RNA processing and PTGR. The introduction of large-scale quantitative methods, such as next-generation sequencing and modern protein mass spectrometry, has renewed interest in the investigation of PTGR and the protein factors involved at a systems-biology level. Here, we present a census of 1,542 manually curated RBPs that we have analysed for their interactions with different classes of RNA, their evolutionary conservation, their abundance and their tissue-specific expression. Our analysis is a critical step towards the comprehensive characterization of proteins involved in human RNA metabolism.

1,479 citations

Journal ArticleDOI
10 Nov 2016-Nature
TL;DR: Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified, and emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking.
Abstract: Amyotrophic lateral sclerosis (ALS) is a progressive and uniformly fatal neurodegenerative disease. A plethora of genetic factors have been identified that drive the degeneration of motor neurons in ALS, increase susceptibility to the disease or influence the rate of its progression. Emerging themes include dysfunction in RNA metabolism and protein homeostasis, with specific defects in nucleocytoplasmic trafficking, the induction of stress at the endoplasmic reticulum and impaired dynamics of ribonucleoprotein bodies such as RNA granules that assemble through liquid-liquid phase separation. Extraordinary progress in understanding the biology of ALS provides new reasons for optimism that meaningful therapies will be identified.

1,382 citations

Journal ArticleDOI
07 Aug 2013-Neuron
TL;DR: It is presented the case here that these two processes are intimately linked, with disease-initiated perturbation of either leading to further deviation of both protein and RNA homeostasis through a feedforward loop including cell-to-cell prion-like spread that may represent the mechanism for relentless disease progression.

1,347 citations