scispace - formally typeset
Search or ask a question
Author

Maria Clara V.M. Starling

Bio: Maria Clara V.M. Starling is an academic researcher from Universidade Federal de Minas Gerais. The author has contributed to research in topics: Wastewater & Effluent. The author has an hindex of 8, co-authored 27 publications receiving 263 citations. Previous affiliations of Maria Clara V.M. Starling include Lille University of Science and Technology.

Papers
More filters
Journal ArticleDOI
TL;DR: Data gathered indicated that caffeine, paracetamol, atenolol, ibuprofen, cephalexin and bisphenol A occur in the μg L-1 range in streams near urban areas, and endocrine disruptors are frequently detected in surface waters, highest concentrations account for 17α-ethynylestradiol and 17β-estradio.

147 citations

Journal ArticleDOI
TL;DR: In this article, the authors used various analytical tools for identification and characterization of microplastics and their transformation products in environmental compartments, including membrane filtration and coagulation-flocculation-settling treatments.

81 citations

Journal ArticleDOI
TL;DR: This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes, and shows partial compliance of treated wastewater with the physicochemical quality guidelines for reuse.
Abstract: This study verifies textile wastewater reuse treated by the conventional activated sludge process and subjected to further treatment by advanced oxidation processes. Three alternative processes are discussed: Fenton, photo-Fenton, and UV/H2O2. Evaluation of treatments effects was based on factorial experiment design in which the response variables were the maximum removal of COD and the minimum concentration of residual H2O2 in treated wastewater. Results indicated Fenton's reagent, COD/[H2O2]/[Fe2+] mass ratio of 1:2:2, as the best alternative. The selected technique was applied to real wastewater collected from a conventional treatment plant of a textile mill. The quality of the wastewater before and after the additional treatment was monitored in terms of 16 physicochemical parameters defined as suitable for the characterization of waters subjected to industrial textile use. The degradation of the wastewater was also evaluated by determining the distribution of its molecular weight along with the organic matter fractionation by ultrafiltration, measured in terms of COD. Finally, a sample of the wastewater after additional treatment was tested for reuse at pilot scale in order to evaluate the impact on the quality of dyed fabrics. Results show partial compliance of treated wastewater with the physicochemical quality guidelines for reuse. Removal and conversion of high and medium molecular weight substances into low molecular weight substances was observed, as well as the degradation of most of the organic matter originally present in the wastewater. Reuse tests indicated positive results, confirming the applicability of wastewater reuse after the suggested additional treatment. Graphical abstract Textile wastewater samples after additional treatment by Fenton's reagent, photo-Fenton and H2O2/UV tested in different conditions.

42 citations

Journal ArticleDOI
TL;DR: Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.
Abstract: This study aimed at investigating the degradation of fungicide carbendazim (CBZ) via photo-Fenton reactions in artificially and solar irradiated photoreactors at laboratory scale and in a semi-pilot scale Raceway Pond Reactor (RPR), respectively. Acute toxicity was monitored by assessing the sensibility of bioluminescent bacteria (Aliivibrio fischeri) to samples taken during reactions. In addition, by-products formed during solar photo-Fenton were identified by liquid chromatography coupled to mass spectrometry (UFLC-MS). For tests performed in lab-scale, two artificial irradiation sources were compared (UVλ > 254nm and UV-Visλ > 320nm). A complete design of experiments was performed in the semi-pilot scale RPR in order to optimize reaction conditions (Fe2+ and H2O2 concentrations, and water depth). Efficient degradation of carbendazim (> 96%) and toxicity removal were achieved via artificially irradiated photo-Fenton under both irradiation sources. Control experiments (UV photolysis and UV-Vis peroxidation) were also efficient but led to increased acute toxicity. In addition, H2O2/UVλ > 254nm required longer reaction time (60 minutes) when compared to the photo-Fenton process (less than 1 min). While Fenton’s reagent achieved high CBZ and acute toxicity removal, its efficiency demands higher concentration of reagents in comparison to irradiated processes. Solar photo-Fenton removed carbendazim within 15 min of reaction (96%, 0.75 kJ L−1), and monocarbomethoxyguanidine, benzimidazole isocyanate, and 2-aminobenzimidazole were identified as transformation products. Results suggest that both solar photo-Fenton and artificially irradiated systems are promising routes for carbendazim degradation.

40 citations

Journal ArticleDOI
TL;DR: In this paper, the degradation of four emerging contaminants losartan potassium (LP), furosemide (FRSM), caffeine (CAF), and carbendazim (CBZ) under UV-C/AOPs individually in pure water and their simultaneous degradation was investigated.

35 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors present a comprehensive and fundamental assessment of the photocatalytic activity for the removal of organic dyes and phenolic compounds from textile wastewater, which has been widely studied and is being commercialized in many developing countries in the world.
Abstract: Treatment of textile wastewater using titanium dioxide (TiO2) photocatalysis has been started from the last decade and reached attention to the researchers because of its versatile application. The variety of applications of TiO2 as a photocatalyst has been taken place because of low operating temperature, biologically inert nature, low energy consumption, water insolubility, ease availability and photoactivity, less toxicity, high chemical stability, suitable flat band potential, narrow band gap and environmentally benign. The successful and efficient application of photocatalysis depends on quality of photocatalyst, nature of pollutants, and source of light, which should be in close contact with each other. The TiO2 photocatalyst is used for the effluent treatment of textile wastewater in the presence of ultraviolet (UV) irradiation. Heterogeneous UV-TiO2 photocatalysis is capable to remove organic pollutants from textile wastewater, which has been widely studied and the technology also being commercialized in many developing countries in the world. This review focuses on the mechanism of UV-TiO2 photocatalysis, modification of TiO2 photocatalyst, and application of doping and co-doping in order to improve the photocatalytic activity in wastewater treatment. In addition, the review conveys comprehensive and fundamental assessments of the photocatalytic activity for the removal of organic dyes and phenolic compounds from textile wastewater.

490 citations

Journal ArticleDOI
TL;DR: This review systematically summarizes the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements.
Abstract: Antibiotics, the most frequently prescribed drugs of modern medicine, are extensively used for both human and veterinary applications. Antibiotics from different wastewater sources (e.g., municipal, hospitals, animal production, and pharmaceutical industries) ultimately are discharged into wastewater treatment plants. Sorption and biodegradation are the two major removal pathways of antibiotics during biological wastewater treatment processes. This review provides the fundamental insights into sorption mechanisms and biodegradation pathways of different classes of antibiotics with diverse physical-chemical attributes. Important factors affecting sorption and biodegradation behavior of antibiotics are also highlighted. Furthermore, this review also sheds light on the critical role of extracellular polymeric substances on antibiotics adsorption and their removal in engineered biological wastewater treatment systems. Despite major advancements, engineered biological wastewater treatment systems are only moderately effective (48-77%) in the removal of antibiotics. In this review, we systematically summarize the behavior and removal of different antibiotics in various biological treatment systems with discussion on their removal efficiency, removal mechanisms, critical bioreactor operating conditions affecting antibiotics removal, and recent innovative advancements. Besides, relevant background information including antibiotics classification, physical-chemical properties, and their occurrence in the environment from different sources is also briefly covered. This review aims to advance our understanding of the fate of various classes of antibiotics in engineered biological wastewater treatment systems and outlines future research directions.

454 citations

Journal ArticleDOI
TL;DR: In this article, the authors present the recent developments in Advanced Oxidation Processes (AOPs), biological processes and their combinations for industrial textile wastewater, focusing on the comparison of cost effectiveness of wastewater treatment processes.

365 citations

Journal ArticleDOI
TL;DR: The most common EP reported were 17β-estradiol, bisphenol A and estrone; the UWC component with the greatest number of measurements in the reported studies were effluents from wastewater treatment plants.

210 citations

Journal ArticleDOI
TL;DR: The state-of-art technologies used to remove ECs from wastewater through a comprehensive review are presented and a hybrid technique of ozonation accompanied by activated carbon was found significantly effective in removing some ECs, particularly pharmaceuticals and pesticides.

195 citations