scispace - formally typeset
Search or ask a question
Author

Maria Cristina Rulli

Other affiliations: Instituto Politécnico Nacional
Bio: Maria Cristina Rulli is an academic researcher from Polytechnic University of Milan. The author has contributed to research in topics: Agriculture & Water resources. The author has an hindex of 37, co-authored 112 publications receiving 4460 citations. Previous affiliations of Maria Cristina Rulli include Instituto Politécnico Nacional.


Papers
More filters
Journal ArticleDOI
TL;DR: It is found that land and water grabbing are occurring at alarming rates in all continents except Antarctica and the per capita volume of grabbed water often exceeds the water requirements for a balanced diet and would be sufficient to improve food security and abate malnourishment in the grabbed countries.
Abstract: Societal pressure on the global land and freshwater resources is increasing as a result of the rising food demand by the growing human population, dietary changes, and the enhancement of biofuel production induced by the rising oil prices and recent changes in United States and European Union bioethanol policies. Many countries and corporations have started to acquire relatively inexpensive and productive agricultural land located in foreign countries, as evidenced by the dramatic increase in the number of transnational land deals between 2005 and 2009. Often known as “land grabbing,” this phenomenon is associated with an appropriation of freshwater resources that has never been assessed before. Here we gather land-grabbing data from multiple sources and use a hydrological model to determine the associated rates of freshwater grabbing. We find that land and water grabbing are occurring at alarming rates in all continents except Antarctica. The per capita volume of grabbed water often exceeds the water requirements for a balanced diet and would be sufficient to improve food security and abate malnourishment in the grabbed countries. It is found that about 0.31 × 1012 m3⋅y−1 of green water (i.e., rainwater) and up to 0.14 × 1012 m3⋅y−1 of blue water (i.e., irrigation water) are appropriated globally for crop and livestock production in 47 × 106 ha of grabbed land worldwide (i.e., in 90% of the reported global grabbed land).

519 citations

Journal ArticleDOI
TL;DR: This review explores multiple components of the food‐energy‐water nexus and highlights possible approaches that could be used to meet food and energy security with the limited renewable water resources of the planet.
Abstract: Water availability is a major factor constraining humanity's ability to meet the future food and energy needs of a growing and increasingly affluent human population. Water plays an important role ...

392 citations

Journal ArticleDOI
TL;DR: A monthly agrohydrological analysis is developed to map agricultural regions affected by agricultural economic water scarcity, finding these regions account for up to 25% of the global croplands, mostly across Sub-Saharan Africa, Eastern Europe, and Central Asia.
Abstract: Water scarcity raises major concerns on the sustainable future of humanity and the conservation of important ecosystem functions. To meet the increasing food demand without expanding cultivated areas, agriculture will likely need to introduce irrigation in croplands that are currently rain-fed but where enough water would be available for irrigation. “Agricultural economic water scarcity” is, here, defined as lack of irrigation due to limited institutional and economic capacity instead of hydrologic constraints. To date, the location and productivity potential of economically water scarce croplands remain unknown. We develop a monthly agrohydrological analysis to map agricultural regions affected by agricultural economic water scarcity. We find these regions account for up to 25% of the global croplands, mostly across Sub-Saharan Africa, Eastern Europe, and Central Asia. Sustainable irrigation of economically water scarce croplands could feed an additional 840 million people while preventing further aggravation of blue water scarcity.

268 citations

Journal ArticleDOI
TL;DR: A global assessment of biofuels crop production is provided, global patterns of biofuel crop/oil trade are reconstructed and the associated displacement of water and land use is determined.
Abstract: Recent energy security strategies, investment opportunities and energy policies have led to an escalation in biofuel consumption at the expenses of food crops and pastureland. To evaluate the important impacts of biofuels on food security, the food-energy nexus needs to be investigated in the context of its linkages with the overall human appropriation of land and water resources. Here we provide a global assessment of biofuel crop production, reconstruct global patterns of biofuel crop/oil trade and determine the associated displacement of water and land use. We find that bioethanol is mostly produced with domestic crops while 36% of biodiesel consumption relies on international trade, mainly from Southeast Asia. Altogether, biofuels rely on about 2-3% of the global water and land used for agriculture, which could feed about 30% of the malnourished population. We evaluate the food-energy tradeoff and the impact an increased reliance on biofuel would have on the number of people the planet can feed.

249 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions.
Abstract: Growing demand for agricultural commodities for food, fuel and other uses is expected to be met through an intensification of production on lands that are currently under cultivation. Intensification typically entails investments in modern technology — such as irrigation or fertilizers — and increases in cropping frequency in regions suitable for multiple growing seasons. Here we combine a process-based crop water model with maps of spatially interpolated yields for 14 major food crops to identify potential differences in food production and water use between current and optimized crop distributions. We find that the current distribution of crops around the world neither attains maximum production nor minimum water use. We identify possible alternative configurations of the agricultural landscape that, by reshaping the global distribution of crops within current rainfed and irrigated croplands based on total water consumption, would feed an additional 825 million people while reducing the consumptive use of rainwater and irrigation water by 14% and 12%, respectively. Such an optimization process does not entail a loss of crop diversity, cropland expansion or impacts on nutrient and feed availability. It also does not necessarily invoke massive investments in modern technology that in many regions would require a switch from smallholder farming to large-scale commercial agriculture with important impacts on rural livelihoods. The current distribution of crops around the world neither attains maximum production nor minimum water use, according to a crop water model and yield data. An optimized crop distribution could feed an additional 825 million people and substantially reduce water use.

224 citations


Cited by
More filters
01 Jan 2004
TL;DR: Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance and describes numerous important application areas such as image based rendering and digital libraries.
Abstract: From the Publisher: The accessible presentation of this book gives both a general view of the entire computer vision enterprise and also offers sufficient detail to be able to build useful applications. Users learn techniques that have proven to be useful by first-hand experience and a wide range of mathematical methods. A CD-ROM with every copy of the text contains source code for programming practice, color images, and illustrative movies. Comprehensive and up-to-date, this book includes essential topics that either reflect practical significance or are of theoretical importance. Topics are discussed in substantial and increasing depth. Application surveys describe numerous important application areas such as image based rendering and digital libraries. Many important algorithms broken down and illustrated in pseudo code. Appropriate for use by engineers as a comprehensive reference to the computer vision enterprise.

3,627 citations

01 Feb 2016

1,970 citations

Book Chapter
01 Jan 2010

1,556 citations