scispace - formally typeset
Search or ask a question
Author

Maria de Sousa

Bio: Maria de Sousa is an academic researcher from University of Porto. The author has contributed to research in topics: Hemochromatosis & Hereditary hemochromatosis. The author has an hindex of 29, co-authored 64 publications receiving 5494 citations. Previous affiliations of Maria de Sousa include Instituto de Biologia Molecular e Celular & Cornell University.


Papers
More filters
Journal ArticleDOI
19 Nov 2015-Nature
TL;DR: It is demonstrated that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells.
Abstract: Ever since Stephen Paget's 1889 hypothesis, metastatic organotropism has remained one of cancer's greatest mysteries. Here we demonstrate that exosomes from mouse and human lung-, liver- and brain-tropic tumour cells fuse preferentially with resident cells at their predicted destination, namely lung fibroblasts and epithelial cells, liver Kupffer cells and brain endothelial cells. We show that tumour-derived exosomes uptaken by organ-specific cells prepare the pre-metastatic niche. Treatment with exosomes from lung-tropic models redirected the metastasis of bone-tropic tumour cells. Exosome proteomics revealed distinct integrin expression patterns, in which the exosomal integrins α6β4 and α6β1 were associated with lung metastasis, while exosomal integrin αvβ5 was linked to liver metastasis. Targeting the integrins α6β4 and αvβ5 decreased exosome uptake, as well as lung and liver metastasis, respectively. We demonstrate that exosome integrin uptake by resident cells activates Src phosphorylation and pro-inflammatory S100 gene expression. Finally, our clinical data indicate that exosomal integrins could be used to predict organ-specific metastasis.

3,399 citations

Journal ArticleDOI
Ayuko Hoshino1, Ayuko Hoshino2, Han Sang Kim3, Han Sang Kim2, Linda Bojmar4, Linda Bojmar2, Linda Bojmar5, Kofi Ennu Gyan2, Michele Cioffi2, Jonathan M. Hernandez6, Jonathan M. Hernandez2, Jonathan M. Hernandez7, Constantinos P. Zambirinis2, Constantinos P. Zambirinis6, Gonçalo Rodrigues2, Gonçalo Rodrigues8, Henrik Molina9, Søren Heissel9, Milica Tesic Mark9, Loïc Steiner10, Loïc Steiner2, Alberto Benito-Martin2, Serena Lucotti2, Angela Di Giannatale2, Katharine Offer2, Miho Nakajima2, Caitlin Williams2, Laura Nogués2, Laura Nogués11, Fanny A. Pelissier Vatter2, Ayako Hashimoto12, Ayako Hashimoto1, Ayako Hashimoto2, Alexander E. Davies13, Daniela Freitas8, Daniela Freitas2, Candia M. Kenific2, Yonathan Ararso2, Weston Buehring2, Pernille Lauritzen2, Yusuke Ogitani2, Kei Sugiura12, Kei Sugiura1, Naoko Takahashi1, Maša Alečković14, Kayleen A. Bailey2, Joshua S. Jolissant2, Joshua S. Jolissant6, Huajuan Wang2, Ashton Harris2, L. Miles Schaeffer2, Guillermo García-Santos15, Guillermo García-Santos2, Zoe Posner2, Vinod P. Balachandran6, Yasmin Khakoo6, G. Praveen Raju16, Avigdor Scherz17, Irit Sagi17, Ruth Scherz-Shouval17, Yosef Yarden17, Moshe Oren17, Mahathi Malladi6, Mary Petriccione6, Kevin C. De Braganca6, Maria Donzelli6, Cheryl Fischer6, Stephanie Vitolano6, Geraldine P. Wright6, Lee Ganshaw6, Mariel Marrano6, Amina Ahmed6, Joe DeStefano6, Enrico Danzer6, Michael H.A. Roehrl6, Norman J. Lacayo18, Theresa C. Vincent19, Theresa C. Vincent5, Martin R. Weiser6, Mary S. Brady6, Paul A. Meyers6, Leonard H. Wexler6, Srikanth R. Ambati6, Alexander J. Chou6, Emily K. Slotkin6, Shakeel Modak6, Stephen S. Roberts6, Ellen M. Basu6, Daniel Diolaiti19, Benjamin A. Krantz6, Benjamin A. Krantz19, Fatima Cardoso20, Amber L. Simpson6, Michael F. Berger6, Charles M. Rudin6, Diane M. Simeone19, Maneesh Jain21, Cyrus M. Ghajar22, Surinder K. Batra21, Ben Z. Stanger23, Jack D. Bui24, Kristy A. Brown2, Vinagolu K. Rajasekhar6, John H. Healey6, Maria de Sousa2, Maria de Sousa8, Kim Kramer6, Sujit Sheth2, Jeanine Baisch2, Virginia Pascual2, Todd E. Heaton6, Michael P. La Quaglia6, David J. Pisapia2, Robert E. Schwartz2, Haiying Zhang2, Yuan Liu6, Arti Shukla25, Laurence Blavier26, Yves A. DeClerck26, Mark A. LaBarge27, Mina J. Bissell28, Thomas C. Caffrey21, Paul M. Grandgenett21, Michael A. Hollingsworth21, Jacqueline Bromberg6, Jacqueline Bromberg2, Bruno Costa-Silva20, Héctor Peinado11, Yibin Kang14, Benjamin A. Garcia23, Eileen M. O'Reilly6, David P. Kelsen6, Tanya M. Trippett6, David R. Jones6, Irina Matei2, William R. Jarnagin6, David Lyden2 
20 Aug 2020-Cell
TL;DR: EVP proteins can serve as reliable biomarkers for cancer detection and determining cancer type, and a panel of tumor-type-specific EVP proteins in TEs and plasma are defined, which can classify tumors of unknown primary origin.

565 citations

Journal ArticleDOI
TL;DR: It is concluded that the normal thymus produces cells which contribute directly to the migratory or circulatory lymphocyte population but that there also exists another source of supply for the plasma cell series, which may function synergistically so that theThymus may control the balance of cell populations within the body.
Abstract: Specific areas of lymphocyte depletion, termed thymus-dependent areas, have been delineated in neonatally thymectomized C3H/Bi and F(1) (C57BL x C3H/Bi) mice. They occur within the lymphoid follicles of the spleen immediately surrounding the central arterioles, and constitute the mid and deep cortical zones of the lymph nodes. These depleted areas appear in healthy thymectomized mice as early as 3 wk after operation but, in mice which survive for more than 6 to 7 wk, the thymus-dependent areas are repopulated by rapidly dividing pyroninophilic cells, the majority of which are immature plasma cells. Syngeneic thymus cells, labeled in vitro with tritiated adenosine localize preferentially in the thymus-dependent areas after intravenous injection. Similarly labeled spleen cells also accumulate in these areas but, in addition, are distributed at the periphery of splenic follicles and in the outer cortical zone of the lymph nodes. Many more spleen than thymus cells enter the lymphoid tissues and the spleen appears to be the primary target. The apparent paradox that syngeneic thymus cells are less efficient than spleen cells in restoring neonatally thymectomized mice to normality is discussed in the light of these results and possible routes by which the migrating cells could enter the lymphoid tissues are considered. The origin of the plasma cells which repopulate the lymphocyte depleted areas is also discussed. It is concluded that the normal thymus produces cells which contribute directly to the migratory or circulatory lymphocyte population but that there also exists another source of supply for the plasma cell series. These two systems may function synergistically so that the thymus may control, directly or indirectly, the balance of cell populations within the body.

446 citations

Journal ArticleDOI
16 Nov 2006-Blood
TL;DR: It is shown, for the first time, that tissue and cellular iron distribution are abnormal and different in th3/+ and th3/th3 mice, and that transfusion therapy can rescue mice affected by beta-thalassemia major and modify both the absorption and distribution of iron.

299 citations

Journal ArticleDOI
TL;DR: It is demonstrated that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth, and that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.
Abstract: The development of effective therapies against brain metastasis is currently hindered by limitations in our understanding of the molecular mechanisms driving it. Here we define the contributions of tumour-secreted exosomes to brain metastatic colonization and demonstrate that pre-conditioning the brain microenvironment with exosomes from brain metastatic cells enhances cancer cell outgrowth. Proteomic analysis identified cell migration-inducing and hyaluronan-binding protein (CEMIP) as elevated in exosomes from brain metastatic but not lung or bone metastatic cells. CEMIP depletion in tumour cells impaired brain metastasis, disrupting invasion and tumour cell association with the brain vasculature, phenotypes rescued by pre-conditioning the brain microenvironment with CEMIP+ exosomes. Moreover, uptake of CEMIP+ exosomes by brain endothelial and microglial cells induced endothelial cell branching and inflammation in the perivascular niche by upregulating the pro-inflammatory cytokines encoded by Ptgs2, Tnf and Ccl/Cxcl, known to promote brain vascular remodelling and metastasis. CEMIP was elevated in tumour tissues and exosomes from patients with brain metastasis and predicted brain metastasis progression and patient survival. Collectively, our findings suggest that targeting exosomal CEMIP could constitute a future avenue for the prevention and treatment of brain metastasis.

217 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material.
Abstract: Extracellular vesicles are a heterogeneous group of cell-derived membranous structures comprising exosomes and microvesicles, which originate from the endosomal system or which are shed from the plasma membrane, respectively They are present in biological fluids and are involved in multiple physiological and pathological processes Extracellular vesicles are now considered as an additional mechanism for intercellular communication, allowing cells to exchange proteins, lipids and genetic material Knowledge of the cellular processes that govern extracellular vesicle biology is essential to shed light on the physiological and pathological functions of these vesicles as well as on clinical applications involving their use and/or analysis However, in this expanding field, much remains unknown regarding the origin, biogenesis, secretion, targeting and fate of these vesicles

4,241 citations

Journal ArticleDOI
07 Feb 2020-Science
TL;DR: The intrinsic properties of exosomes in regulating complex intracellular pathways has advanced their potential utility in the therapeutic control of many diseases, including neurodegenerative conditions and cancer.
Abstract: The study of extracellular vesicles (EVs) has the potential to identify unknown cellular and molecular mechanisms in intercellular communication and in organ homeostasis and disease. Exosomes, with an average diameter of ~100 nanometers, are a subset of EVs. The biogenesis of exosomes involves their origin in endosomes, and subsequent interactions with other intracellular vesicles and organelles generate the final content of the exosomes. Their diverse constituents include nucleic acids, proteins, lipids, amino acids, and metabolites, which can reflect their cell of origin. In various diseases, exosomes offer a window into altered cellular or tissue states, and their detection in biological fluids potentially offers a multicomponent diagnostic readout. The efficient exchange of cellular components through exosomes can inform their applied use in designing exosome-based therapeutics.

3,715 citations

Journal ArticleDOI
10 Mar 2016-Cell
TL;DR: This Review focuses on the context of tumor cells and their microenvironment, but similar results and challenges apply to all patho/physiological systems in which EV-mediated communication is proposed to take place.

2,293 citations

Journal ArticleDOI
TL;DR: The current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication are discussed.
Abstract: The ability of exosomes to transfer cargo from donor to acceptor cells, thereby triggering phenotypic changes in the latter, has generated substantial interest in the scientific community. However, the extent to which exosomes differ from other extracellular vesicles in terms of their biogenesis and functions remains ill-defined. Here, we discuss the current knowledge on the specificities of exosomes and other types of extracellular vesicles, and their roles as important agents of cell-to-cell communication.

2,056 citations

Journal ArticleDOI
TL;DR: This guide to cancer immunotherapy provides a comprehensive historical and biological perspective regarding the advent and clinical implementation of cancer immunotherapeutics, with an emphasis on the fundamental importance of T lymphocyte regulation.
Abstract: The T lymphocyte, especially its capacity for antigen-directed cytotoxicity, has become a central focus for engaging the immune system in the fight against cancer. Basic science discoveries elucidating the molecular and cellular biology of the T cell have led to new strategies in this fight, including checkpoint blockade, adoptive cellular therapy and cancer vaccinology. This area of immunological research has been highly active for the past 50 years and is now enjoying unprecedented bench-to-bedside clinical success. Here, we provide a comprehensive historical and biological perspective regarding the advent and clinical implementation of cancer immunotherapeutics, with an emphasis on the fundamental importance of T lymphocyte regulation. We highlight clinical trials that demonstrate therapeutic efficacy and toxicities associated with each class of drug. Finally, we summarize emerging therapies and emphasize the yet to be elucidated questions and future promise within the field of cancer immunotherapy.

1,695 citations