scispace - formally typeset
Search or ask a question
Author

Maria F. Galindo

Bio: Maria F. Galindo is an academic researcher from University of Castilla–La Mancha. The author has contributed to research in topics: Mitochondrion & Programmed cell death. The author has an hindex of 36, co-authored 66 publications receiving 8113 citations. Previous affiliations of Maria F. Galindo include Universidad Miguel Hernández de Elche & University of Chicago.


Papers
More filters
Journal ArticleDOI
Daniel J. Klionsky1, Kotb Abdelmohsen2, Akihisa Abe3, Joynal Abedin4  +2519 moreInstitutions (695)
TL;DR: In this paper, the authors present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macro-autophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes.
Abstract: In 2008 we published the first set of guidelines for standardizing research in autophagy. Since then, research on this topic has continued to accelerate, and many new scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Accordingly, it is important to update these guidelines for monitoring autophagy in different organisms. Various reviews have described the range of assays that have been used for this purpose. Nevertheless, there continues to be confusion regarding acceptable methods to measure autophagy, especially in multicellular eukaryotes. For example, a key point that needs to be emphasized is that there is a difference between measurements that monitor the numbers or volume of autophagic elements (e.g., autophagosomes or autolysosomes) at any stage of the autophagic process versus those that measure flux through the autophagy pathway (i.e., the complete process including the amount and rate of cargo sequestered and degraded). In particular, a block in macroautophagy that results in autophagosome accumulation must be differentiated from stimuli that increase autophagic activity, defined as increased autophagy induction coupled with increased delivery to, and degradation within, lysosomes (in most higher eukaryotes and some protists such as Dictyostelium) or the vacuole (in plants and fungi). In other words, it is especially important that investigators new to the field understand that the appearance of more autophagosomes does not necessarily equate with more autophagy. In fact, in many cases, autophagosomes accumulate because of a block in trafficking to lysosomes without a concomitant change in autophagosome biogenesis, whereas an increase in autolysosomes may reflect a reduction in degradative activity. It is worth emphasizing here that lysosomal digestion is a stage of autophagy and evaluating its competence is a crucial part of the evaluation of autophagic flux, or complete autophagy. Here, we present a set of guidelines for the selection and interpretation of methods for use by investigators who aim to examine macroautophagy and related processes, as well as for reviewers who need to provide realistic and reasonable critiques of papers that are focused on these processes. These guidelines are not meant to be a formulaic set of rules, because the appropriate assays depend in part on the question being asked and the system being used. In addition, we emphasize that no individual assay is guaranteed to be the most appropriate one in every situation, and we strongly recommend the use of multiple assays to monitor autophagy. Along these lines, because of the potential for pleiotropic effects due to blocking autophagy through genetic manipulation, it is imperative to target by gene knockout or RNA interference more than one autophagy-related protein. In addition, some individual Atg proteins, or groups of proteins, are involved in other cellular pathways implying that not all Atg proteins can be used as a specific marker for an autophagic process. In these guidelines, we consider these various methods of assessing autophagy and what information can, or cannot, be obtained from them. Finally, by discussing the merits and limits of particular assays, we hope to encourage technical innovation in the field.

5,187 citations

Journal ArticleDOI
TL;DR: In this article, the authors present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes.
Abstract: In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field.

1,129 citations

Journal ArticleDOI
TL;DR: The protection from Aβ-induced neurotoxicity afforded by apoE3 treatment may result from clearance of the peptide by apOE3:Aβ complex formation and uptake by apolipoprotein E receptors.
Abstract: Although the genetic link between the e4 allele of apolipoprotein E (apoE) and Alzheimer’s disease is well established, the isoform-specific activity of apoE underlying this correlation remains unclear. To determine whether apoE influences the neurotoxic actions of β-amyloid (Aβ), we examined the effect of native preparations of apoE3 and E4 on Aβ-induced toxicity in primary cultures of rat hippocampal pyramidal neurons. The source of apoE was conditioned medium from HEK-293 cells stably transfected with human apoE3 or E4 cDNA. ApoE4 (10 μg/ml) alone was toxic to the cultures, whereas apoE3 had no effect. ApoE3 treatment prevented the toxicity induced by 10 μm Aβ(1–40) or Aβ(25–35). The apoE3 protective effect appears to be specific to Aβ-induced toxicity, because apoE3 did not protect against the cytotoxicity produced by NMDA or staurosporine, nor did apoE3 affect the increase in intracellular calcium induced by either NMDA or KCl. ApoE3 had no effect on the toxicity produced by Aβ in the presence of receptor-associated protein, an inhibitor of apoE receptors, particularly the LDL-receptor-related protein. Interaction with apoE receptors may not mediate the toxic actions of apoE4, because receptor-associated protein did not affect apoE4-induced neurotoxicity. Consistent with our previous biochemical experiments, analysis of the culture medium revealed that SDS-stable apoE3:Aβ complex is present in greater abundance than apoE4:Aβ complex. Thus, the protection from Aβ-induced neurotoxicity afforded by apoE3 treatment may result from clearance of the peptide by apoE3:Aβ complex formation and uptake by apoE receptors.

193 citations

Journal ArticleDOI
TL;DR: The results support the role of apoptosis in neuronal death due to Aβ(25–35) treatment and also suggest a role for calcium‐regulated proteases in this process.
Abstract: We investigated the potential role of different proteases in the death of cultured rat hippocampal pyramidal neurons induced by beta-amyloid (A beta) (25-35). Both A beta(25-35)- and staurosporine-induced death of these neurons appeared to involve apoptosis, as indicated using Hoechst 33342 and terminal dUDP nick end labeling staining, whereas NMDA-induced death appeared more complex. Two irreversible inhibitors of the interleukin-1 beta converting enzyme (ICE) and related proteases, Z-Val-Ala-Asp-CH2F and acetyl-Tyr-Val-Ala-Asp-chloromethyl ketone, blocked neuronal death produced by A beta(25-35), staurosporine, and NMDA to differing extents. Furthermore, MDL 28,170, a selective inhibitor of the calcium-regulated protease calpain, also inhibited death induced by all agents. A beta(25-35) and staurosporine stimulated the breakdown of the protein spectrin, a calpain substrate. Spectrin breakdown was inhibited by MDL 28,170 but not by ICE inhibitors. Leupeptin was only effective in preventing NMDA-induced death. These results support the role of apoptosis in neuronal death due to A beta(25-35) treatment and also suggest a role for calcium-regulated proteases in this process.

178 citations

Journal Article
TL;DR: It is found that A beta neurotoxicity was significantly attenuated by single treatments with TGF-beta 1 and prevented by repetitive treatments, and the protective effects of TGF -beta 1 were associated with a preservation of mitochondrial potential and function, as determined with rhodamine-123-based microfluorimetry.
Abstract: Neurodegeneration associated with Alzheimer's disease is believed to involve toxicity to beta-amyloid (A beta) and related peptides. Treatment of cultured rat hippocampal neurons with A beta 1-40 (1 microM) or the active fragment A beta 25-35 (1 microM) for 5 days led to a approximately 40-50% decrease in neuronal viability. The hydrophilic antioxidant ascorbic acid (300 microM) and the lipophilic antioxidant 2-mercaptoethanol (10 microM) both protected significantly against A beta neurotoxicity. Despite the protective effects of these antioxidants, both acute and chronic treatments with A beta 25-35 did not increase production of superoxide anions, as monitored with the fluorescent probe hydroethidine. Similarly, overexpression of Cu/Zn-superoxide dismutase using adenovirus-mediated gene transfer did not protect against A beta neurotoxicity. A beta neurotoxicity, however, was prevented in cultures infected with a recombinant, replication-defective adenovirus overexpressing the Ca2+ binding protein calbindin D28k. Transforming growth factor-beta 1 (TGF-beta 1) has been shown to protect neurons against both Ca(2+)- and free radical-mediated neuronal degeneration. We found that A beta neurotoxicity was significantly attenuated by single treatments with TGF-beta 1 (0.1-10 ng/ml) and prevented by repetitive treatments (10 ng/ml/day). The protective effects of TGF-beta 1 were associated with a preservation of mitochondrial potential and function, as determined with rhodamine-123-based microfluorimetry. Because both increased oxidative stress and pathophysiological Ca2+ fluxes can impair mitochondrial function, preservation of mitochondrial potential by TGF-beta 1 could be directly associated with its protection against A beta neurotoxicity. The ability of TGF-beta 1 to increase the expression of the anti-apoptotic proteins Bcl-2 and Bcl-XL is discussed in this context.

176 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis.
Abstract: Machine Learning is the study of methods for programming computers to learn. Computers are applied to a wide range of tasks, and for most of these it is relatively easy for programmers to design and implement the necessary software. However, there are many tasks for which this is difficult or impossible. These can be divided into four general categories. First, there are problems for which there exist no human experts. For example, in modern automated manufacturing facilities, there is a need to predict machine failures before they occur by analyzing sensor readings. Because the machines are new, there are no human experts who can be interviewed by a programmer to provide the knowledge necessary to build a computer system. A machine learning system can study recorded data and subsequent machine failures and learn prediction rules. Second, there are problems where human experts exist, but where they are unable to explain their expertise. This is the case in many perceptual tasks, such as speech recognition, hand-writing recognition, and natural language understanding. Virtually all humans exhibit expert-level abilities on these tasks, but none of them can describe the detailed steps that they follow as they perform them. Fortunately, humans can provide machines with examples of the inputs and correct outputs for these tasks, so machine learning algorithms can learn to map the inputs to the outputs. Third, there are problems where phenomena are changing rapidly. In finance, for example, people would like to predict the future behavior of the stock market, of consumer purchases, or of exchange rates. These behaviors change frequently, so that even if a programmer could construct a good predictive computer program, it would need to be rewritten frequently. A learning program can relieve the programmer of this burden by constantly modifying and tuning a set of learned prediction rules. Fourth, there are applications that need to be customized for each computer user separately. Consider, for example, a program to filter unwanted electronic mail messages. Different users will need different filters. It is unreasonable to expect each user to program his or her own rules, and it is infeasible to provide every user with a software engineer to keep the rules up-to-date. A machine learning system can learn which mail messages the user rejects and maintain the filtering rules automatically. Machine learning addresses many of the same research questions as the fields of statistics, data mining, and psychology, but with differences of emphasis. Statistics focuses on understanding the phenomena that have generated the data, often with the goal of testing different hypotheses about those phenomena. Data mining seeks to find patterns in the data that are understandable by people. Psychological studies of human learning aspire to understand the mechanisms underlying the various learning behaviors exhibited by people (concept learning, skill acquisition, strategy change, etc.).

13,246 citations

Journal ArticleDOI
TL;DR: By better understanding AD inflammatory and immunoregulatory processes, it should be possible to develop anti-inflammatory approaches that may not cure AD but will likely help slow the progression or delay the onset of this devastating disorder.

4,319 citations

Journal ArticleDOI
Lorenzo Galluzzi1, Lorenzo Galluzzi2, Ilio Vitale3, Stuart A. Aaronson4  +183 moreInstitutions (111)
TL;DR: The Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives.
Abstract: Over the past decade, the Nomenclature Committee on Cell Death (NCCD) has formulated guidelines for the definition and interpretation of cell death from morphological, biochemical, and functional perspectives. Since the field continues to expand and novel mechanisms that orchestrate multiple cell death pathways are unveiled, we propose an updated classification of cell death subroutines focusing on mechanistic and essential (as opposed to correlative and dispensable) aspects of the process. As we provide molecularly oriented definitions of terms including intrinsic apoptosis, extrinsic apoptosis, mitochondrial permeability transition (MPT)-driven necrosis, necroptosis, ferroptosis, pyroptosis, parthanatos, entotic cell death, NETotic cell death, lysosome-dependent cell death, autophagy-dependent cell death, immunogenic cell death, cellular senescence, and mitotic catastrophe, we discuss the utility of neologisms that refer to highly specialized instances of these processes. The mission of the NCCD is to provide a widely accepted nomenclature on cell death in support of the continued development of the field.

3,301 citations

Journal ArticleDOI
TL;DR: A major unifying thread of the review is a consideration of how the changes occurring during and after ischemia conspire to produce damaging levels of free radicals and peroxynitrite to activate calpain and other Ca(2+)-driven processes that are damaging, and to initiate the apoptotic process.
Abstract: This review is directed at understanding how neuronal death occurs in two distinct insults, global ischemia and focal ischemia. These are the two principal rodent models for human disease. Cell dea...

2,960 citations

Journal ArticleDOI
TL;DR: The mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, and all of the known ROS-producing sites and their relevance to the mitochondrial ROS production in vivo are discussed.
Abstract: Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca2+, etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca2+). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.

2,893 citations