scispace - formally typeset
Search or ask a question
Author

Maria Fox

Other affiliations: University of Strathclyde, Durham University, University UCINF  ...read more
Bio: Maria Fox is an academic researcher from King's College London. The author has contributed to research in topics: Domain (software engineering) & Automated planning and scheduling. The author has an hindex of 36, co-authored 167 publications receiving 6462 citations. Previous affiliations of Maria Fox include University of Strathclyde & Durham University.


Papers
More filters
Journal ArticleDOI
TL;DR: PDDL2.1 as discussed by the authors is a modelling language capable of expressing temporal and numeric properties of planning domains and has been used in the International Planning Competitions (IPC) since 1998.
Abstract: In recent years research in the planning community has moved increasingly towards application of planners to realistic problems involving both time and many types of resources. For example, interest in planning demonstrated by the space research community has inspired work in observation scheduling, planetary rover exploration and spacecraft control domains. Other temporal and resource-intensive domains including logistics planning, plant control and manufacturing have also helped to focus the community on the modelling and reasoning issues that must be confronted to make planning technology meet the challenges of application. The International Planning Competitions have acted as an important motivating force behind the progress that has been made in planning since 1998. The third competition (held in 2002) set the planning community the challenge of handling time and numeric resources. This necessitated the development of a modelling language capable of expressing temporal and numeric properties of planning domains. In this paper we describe the language, PDDL2.1, that was used in the competition. We describe the syntax of the language, its formal semantics and the validation of concurrent plans. We observe that PDDL2.1 has considerable modelling power -- exceeding the capabilities of current planning technology -- and presents a number of important challenges to the research community.

1,420 citations

Journal ArticleDOI
TL;DR: The paper addresses the questions of comparative performance between planners, comparative difficulty of domains, the degree of agreement between planners about the relative difficulty of individual problem instances and the question of how well planners scale relative to one another over increasingly difficult problems through statistical analysis of the raw results.
Abstract: This paper reports the outcome of the third in the series of biennial international planning competitions, held in association with the International Conference on AI Planning and Scheduling (AIPS) in 2002. In addition to describing the domains, the planners and the objectives of the competition, the paper includes analysis of the results. The results are analysed from several perspectives, in order to address the questions of comparative performance between planners, comparative difficulty of domains, the degree of agreement between planners about the relative difficulty of individual problem instances and the question of how well planners scale relative to one another over increasingly difficult problems. The paper addresses these questions through statistical analysis of the raw results of the competition, in order to determine which results can be considered to be adequately supported by the data. The paper concludes with a discussion of some challenges for the future of the competition series.

334 citations

Proceedings Article
12 May 2010
TL;DR: This paper explores the potential of a forward-chaining state-based search strategy to support partial-order planning in the solution of temporal-numeric problems, and compares POPF with the approach of constructing a sequenced plan and lifting a partial order from it.
Abstract: Over the last few years there has been a revival of interest in the idea of least-commitment planning with a number of researchers returning to the partial-order planning approaches of UCPOP and VHPOP. In this paper we explore the potential of a forward-chaining state-based search strategy to support partial-order planning in the solution of temporal-numeric problems. Our planner, POPF, is built on the foundations of grounded forward search, in combination with linear programming to handle continuous linear numeric change. To achieve a partial ordering we delay commitment to ordering decisions, timestamps and the values of numeric parameters, managing sets of constraints as actions are started and ended. In the context of a partially ordered collection of actions, constructing the linear program is complicated and we propose an efficient method for achieving this. Our late-commitment approach achieves flexibility, while benefiting from the informative search control of forward planning, and allows temporal and metric decisions to be made — as is most efficient — by the LP solver rather than by the discrete reasoning of the planner. We compare POPF with the approach of constructing a sequenced plan and then lifting a partial order from it, showing that our approach can offer improvements in terms of makespan, and time to find a solution, in several benchmark domains.

266 citations

Journal ArticleDOI
TL;DR: The syntax and modelling style of PDDL+, a planning domain description language for modelling mixed discrete-continuous planning domains, is described, showing that the language makes convenient the modelling of complex time-dependent effects.
Abstract: In this paper we present PDDL+, a planning domain description language for modelling mixed discrete-continuous planning domains. We describe the syntax and modelling style of PDDL+, showing that the language makes convenient the modelling of complex time-dependent effects. We provide a formal semantics for PDDL+ by mapping planning instances into constructs of hybrid automata. Using the syntax of HAs as our semantic model we construct a semantic mapping to labelled transition systems to complete the formal interpretation of PDDL+ planning instances. An advantage of building a mapping from PDDL+ to HA theory is that it forms a bridge between the Planning and Real Time Systems research communities. One consequence is that we can expect to make use of some of the theoretical properties of HAs. For example, for a restricted class of HAs the Reachability problem (which is equivalent to Plan Existence) is decidable. PDDL+ provides an alternative to the continuous durative action model of PDDL2.1, adding a more flexible and robust model of time-dependent behaviour.

239 citations

Journal ArticleDOI
Maria Fox1, Derek Long1
TL;DR: A process by which state invariants can be extracted from the automatically inferred type structure of a domain is described, being developed for exploitation by STAN, a Graphplan based planner that employs state analysis techniques to enhance its performance.
Abstract: As planning is applied to larger and richer domains the effort involved in constructing domain descriptions increases and becomes a significant burden on the human application designer. If general planners are to be applied successfully to large and complex domains it is necessary to provide the domain designer with some assistance in building correctly encoded domains. One way of doing this is to provide domain-independent techniques for extracting, from a domain description, knowledge that is implicit in that description and that can assist domain designers in debugging domain descriptions. This knowledge can also be exploited to improve the performance of planners: several researchers have explored the potential of state invariants in speeding up the performance of domain-independent planners. In this paper we describe a process by which state invariants can be extracted from the automatically inferred type structure of a domain. These techniques are being developed for exploitation by STAN, a Graphplan based planner that employs state analysis techniques to enhance its performance.

225 citations


Cited by
More filters
Journal ArticleDOI
TL;DR: This paper argues that the field of explainable artificial intelligence should build on existing research, and reviews relevant papers from philosophy, cognitive psychology/science, and social psychology, which study these topics, and draws out some important findings.

2,585 citations

Book ChapterDOI
01 Jan 1982
TL;DR: In this article, the authors discuss leading problems linked to energy that the world is now confronting and propose some ideas concerning possible solutions, and conclude that it is necessary to pursue actively the development of coal, natural gas, and nuclear power.
Abstract: This chapter discusses leading problems linked to energy that the world is now confronting and to propose some ideas concerning possible solutions. Oil deserves special attention among all energy sources. Since the beginning of 1981, it has merely been continuing and enhancing the downward movement in consumption and prices caused by excessive rises, especially for light crudes such as those from Africa, and the slowing down of worldwide economic growth. Densely-populated oil-producing countries need to produce to live, to pay for their food and their equipment. If the economic growth of the industrialized countries were to be 4%, even if investment in the rational use of energy were pushed to the limit and the development of nonpetroleum energy sources were also pursued actively, it would be extremely difficult to prevent a sharp rise in prices. It is evident that it is absolutely necessary to pursue actively the development of coal, natural gas, and nuclear power if a physical shortage of energy is not to block economic growth.

2,283 citations

Journal ArticleDOI
Amina Adadi1, Mohammed Berrada1
TL;DR: This survey provides an entry point for interested researchers and practitioners to learn key aspects of the young and rapidly growing body of research related to XAI, and review the existing approaches regarding the topic, discuss trends surrounding its sphere, and present major research trajectories.
Abstract: At the dawn of the fourth industrial revolution, we are witnessing a fast and widespread adoption of artificial intelligence (AI) in our daily life, which contributes to accelerating the shift towards a more algorithmic society. However, even with such unprecedented advancements, a key impediment to the use of AI-based systems is that they often lack transparency. Indeed, the black-box nature of these systems allows powerful predictions, but it cannot be directly explained. This issue has triggered a new debate on explainable AI (XAI). A research field holds substantial promise for improving trust and transparency of AI-based systems. It is recognized as the sine qua non for AI to continue making steady progress without disruption. This survey provides an entry point for interested researchers and practitioners to learn key aspects of the young and rapidly growing body of research related to XAI. Through the lens of the literature, we review the existing approaches regarding the topic, discuss trends surrounding its sphere, and present major research trajectories.

2,258 citations

Journal ArticleDOI
TL;DR: A novel search strategy is introduced that combines hill-climbing with systematic search, and it is shown how other powerful heuristic information can be extracted and used to prune the search space.
Abstract: We describe and evaluate the algorithmic techniques that are used in the FF planning system. Like the HSP system, FF relies on forward state space search, using a heuristic that estimates goal distances by ignoring delete lists. Unlike HSP's heuristic, our method does not assume facts to be independent. We introduce a novel search strategy that combines hill-climbing with systematic search, and we show how other powerful heuristic information can be extracted and used to prune the search space. FF was the most successful automatic planner at the recent AIPS-2000 planning competition. We review the results of the competition, give data for other benchmark domains, and investigate the reasons for the runtime performance of FF compared to HSP.

1,994 citations

Posted Content
TL;DR: Previous efforts to define explainability in Machine Learning are summarized, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought, and a taxonomy of recent contributions related to the explainability of different Machine Learning models are proposed.
Abstract: In the last years, Artificial Intelligence (AI) has achieved a notable momentum that may deliver the best of expectations over many application sectors across the field. For this to occur, the entire community stands in front of the barrier of explainability, an inherent problem of AI techniques brought by sub-symbolism (e.g. ensembles or Deep Neural Networks) that were not present in the last hype of AI. Paradigms underlying this problem fall within the so-called eXplainable AI (XAI) field, which is acknowledged as a crucial feature for the practical deployment of AI models. This overview examines the existing literature in the field of XAI, including a prospect toward what is yet to be reached. We summarize previous efforts to define explainability in Machine Learning, establishing a novel definition that covers prior conceptual propositions with a major focus on the audience for which explainability is sought. We then propose and discuss about a taxonomy of recent contributions related to the explainability of different Machine Learning models, including those aimed at Deep Learning methods for which a second taxonomy is built. This literature analysis serves as the background for a series of challenges faced by XAI, such as the crossroads between data fusion and explainability. Our prospects lead toward the concept of Responsible Artificial Intelligence, namely, a methodology for the large-scale implementation of AI methods in real organizations with fairness, model explainability and accountability at its core. Our ultimate goal is to provide newcomers to XAI with a reference material in order to stimulate future research advances, but also to encourage experts and professionals from other disciplines to embrace the benefits of AI in their activity sectors, without any prior bias for its lack of interpretability.

1,602 citations